

NEXCOBOT Inc.

www.nexcobot.com

NEXCOBOT

Open Robot & Machines

NexMotion NRPL

Programming manual

Version: 1.2

Date: 2019-08-29

ii

Copyright © 2019 NEXCOBOT Inc. All Rights Reserved.

Copyright Statement and Disclaimer

 The contents contained in this document are the proprietary property of NexCOBOT Co., Ltd.

(NexCOBOT hereafter) and is subject to the protection of intellectual property law (including, but not

limited to the Copyright Act). The use of any material in relation to this document without the prior

authorization of NexCOBOT is considered infringement. Without the written approval of NexCOBOT

in advance, this document or any part of it shall not be photocopied, sold, distributed, modified,

published, stored or otherwise used.

 To keep this document and its contents correct and complete, NexCOBOT reserves the right to

change or revise the document at any time without further notification.

 Operating machine or equipment has a certain level of danger. It is the user’s responsibility to pay

special attention and have safety protection in place before operating any machine or equipment.

NexCOBOT shall not be held for any and all direct or indirect damage or loss to the equipment

mentioned in this document due to the use for a purpose other than the intended.

iii

Copyright © 2019 NEXCOBOT Inc. All Rights Reserved.

Revision History

Rev. Description

1.0 First released.

1.1 Add Pointer & Array chapter

1.2 Add Structure chapter

iv

Copyright © 2019 NEXCOBOT Inc. All Rights Reserved.

Content

Content .. iv

1. Introduction to NRPL .. 1

 System Architecture .. 1

 Motion objects... 2

 Overloading ... 2

 Tasks and motion objects .. 4

 Default object .. 5

2. Program structure ... 7

 Entry point... 8

 Statement ... 8

 Operator .. 8

 Comments ... 8

3. Variables and expressions .. 9

 Variable ... 9

 Data type ... 9

 Constant value ... 10

 Variable declaration ... 10

 Arithmetic Symbols .. 11

 Relational and logical operators .. 12

 Type conversion .. 13

 Increment and decrement operators .. 14

 Bit operator ... 14

 Setting operators and expressions ... 16

 Conditional expression .. 17

 Operational symbol precedence .. 17

4. Control process .. 18

 Statement and block .. 18

 if – else .. 18

 switch .. 20

 for .. 22

 while .. 23

 do – while .. 23

 break and continue .. 23

 goto and label .. 25

5. Function ... 26

 User-defined function ... 26

 NRPL built-in functions .. 28

v

Copyright © 2019 NEXCOBOT Inc. All Rights Reserved.

6. Pointer and array .. 28

 Pointer and address ... 28

 The arguments of pointer and functions ... 29

 Array ... 31

 Address calculation ... 33

 Multi-dimensional array .. 34

 Array initialization .. 34

7. Structure ... 35

 Structure definition ... 35

 Structures and functions .. 37

8. Keywords ... 40

1

1. Introduction to NRPL

NRPL (NexMotion Real-time Programming Language) is a high-level programming

language developed for industrial automation and robot motion control. Its features

are as follows:

⚫ Grammar is C language liked, easy to get started

⚫ Support multi-tasking

⚫ Task execution is real-time and time-deterministic

⚫ Build-in motion objects: “GROUP” objects and “AXIS” objects

⚫ Motion objects have rich and complete instructions

⚫ Overloading function call supported for build-in instructions

⚫ Support variables, arrays, structures and pointer

⚫ Support user define subroutines

⚫ Support math library

 System Architecture

NRPL program is an independent execution of the program can be loaded into the

task of the NexMotion controller. The NexMotion controller support

multi-tasking. All tasks are scheduled by “real-time scheduler”. Basically, each task

has the same priority. The CPU time is allocated by the scheduler depending on the

amount of logical operations in the task. And the execution time of the same NRPL

program is instantaneous and fixed, so the NRPL program has time determinism.

2

 Motion objects

The NRPL has built-in motion objects, including “GROUP” objects and “AXIS”

objects. The motion objects provide a series of member functions to control the object

for motion control applications. When the controller is started, it automatically creates

motion objects according to the actual number of groups (robots) and the number of

single axes in the system.

Objects are automatically generated by the system in the form of an array. In the

NRPL program, Objects can be used without additional declaration. The syntax is as

follows:

GROUP[0].PTP(G0P1); //Group#0 do PTP motion

GROUP[1].PTP(G1P1); //Group#1 do PTP motion

Detailed descriptions for built-in instructions can be found in the " NexMotion

NRPL Instruction Manual "

 Overloading

The NRPL built-in instructions have "overloading" feature that allows users to

flexibly use them based on application needs.

3

For example, a overloading function “foo()” whose definition is as follows :

void foo(para1, para2 [, para3] [, para4]);

This example foo() has four parameters are “para1” , “para2”, “ Para3” and “para4”.

Para1 and para2 are necessary parameters, just like general function calls, they must

be given values or variables in order. [, para3] and [, para4] with brackets are

indicated as optional parameters and can be ignored depending on the application

requirements.

The following examples are legal for the foo() function:

foo(para1 , para2);

foo(para1, Para2, Para3 =. 5);

foo(para1, Para2, para4 = 10);

foo(para1 , para2, para3=5, para4=10);

foo(para1 , para2, para4=10 , para3=5);

The following is an example of a practical instruction for a GROUP object.

The GROUP has a motion instruction PTP prototype as follows:

PTP (TargetPos, [VP], [TL], [BS], [Z], [ABORT], [CONT]], [OW])

The “TargetPos” (target position) is the necessary input, and the [VP] (speed

percentage), [TL] (tool number) and [BS] (base number)... parameters are optional

parameters. The following examples are legal usage of PTP () instruction:

GROUP[0].PTP(P0); // PTP moves to P0, other parameters are according to system

parameters

GROUP[0].PTP(P1, VP=50); //PTP moves to P1, speed (VP) is set to 50% of system

speed

GROUP[0].PTP(P2, VP=50, Z=30); //PTP moves to P2, speed = 50%, zone = 30

mm

4

For details on the NRPL command parameters, refer to the " NexMotion

NRPL Instruction Manual ".

Note! User-defined function does not support overloading function call.

 Tasks and motion objects

The relationship between NRPL tasks and objects has the following rules:

⚫ One task can control one or more motion objects

⚫ A motion object can only be controlled by one task

⚫ A task can set a motion object as a default object

The following application scenarios are allowed:

1 task controls 1 object
2 tasks control 2 objects

separately
1 task controls 2 objects

The following application scenario is illegal:

Two tasks control same GROUP object

If two tasks control the same motion object at the same time, it is easy to cause a race

5

condition, which may cause dangerous malfunction. If this is the case, the controller

will enter an error state.

If one task has control of one object, but another task tries to read the same object (for

example, to get the position), as shown in the following figure, this situation is legal:

It is generally recommended that the best task assignment is: One task is responsible

for controlling only one motion object, as shown below:

 Default object

An NRPL program can have a default GROUP object. When a GROUP is set as a

default object to a NRPL program, the object instruction call can be simplified, as

follows:

A NRPL program:

void main()

{

6

 GROUP[0].PTP(P0);

 GROUP[0].PTP(P1);

 GROUP[0].PTP(P2);

 GROUP[0].LIN(P3, TL=1, BS=1);

 GROUP[0].LIN(P4, TL=1, BS=1);

}

If GROUP[0] is set as the default object, the above NRPL program can be simplified

as follows:

// Default using GROUP[0]

void main()

{

 PTP(P0);

 PTP(P1);

 PTP(P2);

 LIN(P3, TL=1, BS=1);

 LIN(P4, TL=1, BS=1);

}

When the controller compiles the NRPL program, the default object GROUP[n] is

automatically added to the program, so when the task executes the NRPL instruction,

for example, executing PTP(P0), the instruction can be executed with the correct

object, so when only one group (Robot) is controlled by controller (Typical industrial

robot system applications), the program can be greatly simplified.

7

Typical industrial robot system

The way to set the default object can be set or viewed in the NexMotion controller

user interface software - NexTPUI. In general, when you use NexTPUI to create a

new project, the GROUP object in the system will be automatically set to the task, so

users no need to do configuration additionally.

NexTPUI default group setting screen shot

Complete details of NexTPUI operation, please refer to the " NexTPUI User Manual".

2. Program structure

NRPL program itself no matter how large or small, are a function (function) and

variable (variable) thereof. The statements in the function are used to describe the

application flow and calculation work. Variables are controls used in memory to store

calculated values or processes. The following example is the basic framework of

the NRPL program :

void main() //NRPL Program Entry Point

{

8

// Variables deceleration in beginning...

// main program...

}

 Entry point

When the NRPL program runs, there will be a function entry point. The function of

the entry point in the syntax is as follows:

void main()

{

[Narrative sentences (statements)]

}

The function name “main” must be all lowercase, and not take any parameters,

and void representatives no return value.

 Statement

Statements Subject arithmetic expression (expression) of the composition, is

defined as follows :

Expression (expression): Suppose two variables are added, such as A + B , then this

expression becomes Expression.

Narrative sentence (Statements): will be added later expression semicolon (;) , such

as A + B; , is referred to statement (statement)

 Operator

There are a variety of arithmetic symbols in the NRPL syntax, such as the

multiplication operator is * , the minus operator is - , and such operators can be

described in the third chapter.

 Comments

Can NRPL successful program note text annotation to increase the readability of

the program, in the form of notes can be divided into two types :

1. Single-line annotation : use double slash / / to indicate the text after // until the end

of a single line

2. Block annotation : start with /* , end with */

9

Here's an example :

Void main()

{

// This is a single line comment

/*

Multi-line comments

 Block comments...

*/

}

3. Variables and expressions

 Variable

 The name must begin with the letters (A~Z , a~z) followed by the letters (A~Z) or

numbers (0~9) . In addition, the underline _ (underline) is also a letter, which is used

to increase readability when the variable name is very long (note : no white

space !) . The uppercase and lowercase letters are completely different names in the

compiler, so NEXCOBOT and nexcobot are two different names. In addition,

the keywords (keyword) not be used as variable names, such as if, else, switch,

I32_T ... etc. have been defined as a reserved word.

 Data type

The basic data types are as follows :

Keyword Size (byte) Numerical range

F64_T 8 1.7E +/- 308 with 15 digits of precision

U32_T 4 0 ~ 4294967295

I32_T 4 -2147483648 ~ 2147483647

U16_T 2 0 ~ 65535

I16_T 2 -32768 ~ 32767

U8_T 1 0 ~ 255

I8_T 1 -128 ~ 127

10

 Constant value

 When an integer (eg 1234) is input , it is treated as an I32_T type, and when a

floating point number (eg 12.34) is input , it is regarded as an F64_T type.

 Variable declaration

 All variables must be declared before use . The wording is first named data type,

followed by one or more variable names of the type, as follows :

I32_T lower;

I32_T upper;

F64_T value;

The above example is a data type followed by a variable name, and then multiple

variable names are written as follows :

 I32_T lower, upper, step;

When the variable is announced, the initial value can be given by the way. After the

announcement, an equal sign is added to the initial value or the expression, as

follows :

 I32_T lower = 0 ;

 I32_T upper = 1 + 2;

When the code that declares the variable is executed, the system will configure the

memory block of the type size to provide subsequent code access.

 The life cycle of a variable (region, global) is used to regulate when a variable can

be used.

Regional variables :

 The variable is declared in the function. This variable belongs to the area variable

and can only be used within the function. When the function is executed, the memory

configuration of the area variable is released. In addition, note that the area variable

should be inserted before the expression, and the behavior of declaring variables

should not be interspersed between the expressions .

The legal declaration is as follows:

void foo()

{

 I32_T value_1 = 1; // Deceleration

11

 I32_T value_2 = 2; // Deceleration

 I32_T result; // Deceleration

 Result = value_1 + value_2 ; //Expression

}

The illegal declaration is as follows:

void foo()

{

 I32_T result;

Result = 0; //Expression

I32_T value_1 = 1 ; / / Illegal Deceleration

 I32_T value_2 = 2 ; / / Illegal Deceleration

 Result = value_1 + value_2;

}

Global variables:

In addition to declaring variables as a function of global variables, can in

each one inside a function, and only when the end of the program, will release the

memory, that is the end of the life cycle. Also, please note that the declaration of

global variables cannot be after the function before the function is declared. The

declaration of legal global variables is as follows :

I32_T lower; // announce

Void foo() {...} // function

Unlawful global variable declarations are as follows :

I32_T lower; // announce

Void foo() {...} // function

I32_T upper; // Declaration is illegal because after the function

Void bar() {...} // function

 Arithmetic Symbols

The operator (also called arithmetic symbol) includes five binary operators: +, -,

*, /, % and two unit operators (unary operators): +, - .

12

Binary operator:

Operator Description Operational metatype

+ plus Integer , floating point

- Less Integer , floating point

* Multiply Integer , floating point

/ except Integer , floating point

% Remainder Integer

Note that the integer division will discard all decimals, for example, the 5/2 answer

is 2 . Since 5 and 2 are integers , the answer will also be an integer. Although the

correct answer is 2.5 , the integer type will discard the decimal point, so the result

is 2 . In addition, operator % is not available for floating point numbers.

Unit operator:

Operator Description Operational metatype

+ Positive

value

Integer , floating point

- Negative

value

Integer , floating point

The unit operator - and the binary operator - are not the same, for

example, 8-3 here - represents subtraction, and -3 is represented as an integer with a

negative sign.

 Relational and logical operators

Binary relational operator:

Operator Description Operational metatype

> more than

the

Integer , floating point

>= greater or

equal to

Integer , floating point

< Less than Integer , floating point

<= Less than or

equal to

Integer , floating point

== equal Integer , floating point

!= not equal to Integer , floating point

13

Unit relational operator

Operator Description Operational metatype

! negative Integer , floating point

When the expression 8 > 3 is established, it will return 1 , otherwise it will

return 0 . The unit relational operator ! is to convert non- zero operands

to 0 and 0 to 1 .

Logical relational operator

Operator Description Operational metatype

&& The left and right operands are all

greater than 1 , which is true.

Integer , floating point

|| One of the left and right operands

is greater than 1 , it can be

established

Integer , floating point

Note that the type of result obtained by the relational and logical operators is I32_T .

 Type conversion

In the calculation formula, if the types of operation elements on both sides of the

operation symbol are different, the calculation will be converted into the same

type according to some rules . In general, the narrower definition domain is turned

into a wider one. Many operators will make the operands convert, and use the

following rules to determine the result of the operation, called the usual arithmetic

conversions:

Step 1. If the operand is F64_T , the other will be forced to F64_T , otherwise

enter step2

Step 2. If the operand is U32_T , the other will be forced to U32_T , otherwise

enter step3

Step 3. If the operand is I32_T , the other will be forced to I32_T , otherwise

enter step4

Step 4. If the operand is U16_T , the other will be forced to U16_T , otherwise

enter step5

Step 5. If the operand is I16_T , the other will be forced to I16_T , otherwise

enter step6

Step 6. If the operand is U8_T , the other will be forced to U8_T , otherwise

14

enter step7

Step 7. If the operand is I8_T , the other will be forced to I8_T .

Expression 5 / 2.0 , wherein 2.0 part of F64_T typed, and 5 to I32_T , the above rules

apply, will put 5 is converted into F64_T , a result 2.5 of F64_T type. Note that if

the floating point number is converted to an integer , the decimal is ignored and the

values are inconsistent.

The type conversion can also be explicitly written in the expression by the cast

operator (cast operator) , the format is as follows :

 (type-name) expression

Suppose expression (F64_T) 5 + (F64_T) 2 , where 5 is I32_T typed, to apply

casts (F64_T) , so the result is 5.0 , and the result of this calculation

formula 7.0 in (F64_T) type.

 Increment and decrement operators

 The increment operator ++ is used to increment the operand by one and the

decrement operator -- to decrement the operand by one . Operator + and - can be

written before the variable (such as n ++) after or variables (such as + n) , both of

which will be n value plus 1 , but + n represents the first n value by 1 in The value is

taken, and n++ means that the first value is used to do the addition of 1 . For example,

if the n value is 5 , then

 X = n+ + ;

Will get the X value to get 5 but

 X = ++ n ;

Then get the X value to get 6 ,

Both an operator can only be used for variables, so as (i + j) ++ this formulation are

unacceptable.

 Bit operator

Provide 6 kinds of bit operators, please note the operands that can only be

used for integers .

Bit operator

Operator Description Operational

metatype

15

& Bitwise AND Integer

| Bitwise OR Integer

^ Bit-by-doing exclusive or Integer

<< Shift to the left Integer

>> Shift to the right Integer

~ Take 1 complement, for the

unit operator

Integer

AND bit operation rule : when only two bits are 1 , the result will be 1

 0 1

0 0 0

1 0 1

Let n be U32_T type, operator & used to make bit mask, as follows :

 n = n & 255

OR bit operation rule : as long as one of the bits is 1 , the result will be 1

 0 1

0 0 1

1 1 1

The n of bit8 ~ bit31 is cleared to 0 . Conversely, the operator | is used to set the bit

to 1 , for example :

 n = n | 255;

The n of bit0 ~ bit7 is set to 1 , the rest of the bit unchanged.

XOR bit operation rule : two bits are set to 1 at the same time, and set to 0 when they

are the same

 0 1

0 0 1

1 1 0

 The operators << and >> respectively shift the left operand to the left or right, and

the right operand decides to shift a few bits , and the value of the right operand must

16

be positive. For example, n << 2 shifts n by two bits to the left and 0 to the right ,

which is equivalent to multiplying x by 4 .

 The operator ~ changes its operand element 1 to 0 , 0 to 1 , that is,

takes 1 complement. For example, let n be U8_T type and the value is 0 .

 n = ~n;

The result n is 255 ;

 Setting operators and expressions

An expression like this :

 n = n + 2;

The variable n to the left of the equal sign appears immediately on the right and can

be written in a concise form :

 n += 2;

Herein + = is the assignment operator (assignment operator) one.

Operator Description Operational

metatype

= Assign Integer , floating

point

+= plus Integer , floating

point

-= Less Integer , floating

point

*= Multiply Integer , floating

point

/= except Integer , floating

point

%= Remainder Integer

&= AND Integer

^= XOR Integer

|= OR Integer

<<= Left displacement Integer

>>= Right displacement Integer

If both expr1 and expr2 are arithmetic , then

17

 Expr1 op= expr2

Just equal

 Expr1 = (expr1) op (expr2)

Only the former expr1 is only counted once. Note that brackets clamp expr2

to indicate that it is a self-contained expression, for example :

 x *= y+1

Is equal to

 x = x * (y+1)

Instead of

 x = x * y + 1

 Conditional expression

 Conditional expressions use a ternary operator consisting of a question mark and a

colon. The format is as follows :

 Expr1 ? expr2 : expr3

 First calculate expr1 , if its value is 1 (for true) , then calculate expr2 , and the value

of expr2 is treated as the value of the conditional

expression. Otherwise (expr1 is 0) , expr3 is evaluated as the value of the conditional

expression. Note that expr2 and expr3 will only calculate one of them. Examples are

as follows :

 z = (a > b) ? a : b ; /* z=max(a, b) */

You can put a larger value of a or b into z . If the types of expr2 and expr3 are

different, the result is determined according to the rules of general arithmetic

transformation (Section 2.2.7) . If a is F64_T and b is I32_T , the result

type is F64_T .

 Operational symbol precedence

calculating signs Calculation order

() , [], ->, . Left to right

!, ~, ++, --, +(positive value), -(negative value),

*(indirection), &(take address),

Left to right

*(multiply), /(division), %(take the remainder) Left to right

18

+(plus), -(minus) Left to right

>>, << Left to right

<, <=, >, >= Left to right

==, != Left to right

& (bitwise AND) Left to right

^ (bitwise XOR) Left to right

| (bitwise OR) Left to right

&& Left to right

|| Left to right

? : Right to left

=, +=, -=, /=, %=, &=, ^=, |=, <<=, >>== Right to left

4. Control process

 Statement and block

The expression such as x = 0 or x++ is followed by a semicolon (;) to become

the statement . The semicolon in the grammar is the termination symbol of

the Statement .

Braces {} are used to group Statement sandwiched becomes Compound

Statement , or segments, called (Block) , may be considered in a single

grammar Statement . For example, braces enclose all the statements of the entire

function as an obvious example. After the end of the section, there is no need to add a

semicolon after the brackets.

 if – else

Use if-else to express decisions, the syntax is as follows

 If (expression)

 Statement_1

 Else

 Statement_2

The else part is optional. Execute the expression first , if it is non- zero

19

(representing true) , execute statement_1 , otherwise

execute statement_2 . Although statement_1 and statement_2 are only capable of

a statement , but the aforementioned compound statement can be, but as a statement to

use, so the use of braces can write a group statement , as follows :

If (expression)

{

 Statement

 Statement

 Statement

} else

{

 Statement

 Statement

}

 Further else part optional, so the nest -like if statement (i.e. if statement contains

another if statement) if a dispense else partial, so that it will read the code confusion,

the following examples :

 If (n > 0)

 If (a > b)

 z=a;

 Else

 z=b;

In this example there are two if but only one else , so else of course, is closer to

belong to him if , therefore we will else with the second one if justified, to

represent else belongs to the second one if , even deliberately else first

The if alignment does not change its meaning. If you want to make else belong to the

first if , then use braces, as follows :

If (n > 0)

{

If (a > b)

 z=a;

} else

 z=b;

20

Therefore, when writing a program, you must develop the habit of using a parenthesis

when you have a nested if .

If-else can also be written in a variety of decisions, the general if-else is written as

follows :

 If (expression)

 Statement_1

 Else

 Statement_2

And a variety of decision-making (else-if) , is to replace statement_2 with if-else , as

follows :

 If(expression)

 Statement_1

 Else

 If(expression)

 Statement_2

 Else

 Statement_3

And so on, if you need to replace the statement_3 with if-else , and the above code

style will make the reading code confusing, so it can be organized as follows :

 If (expression)

 Statement_1

 Else if (expression)

 Statement_2

 Else

 Statement_3

The various expressions are in the order of top-down. As long as one expression

is true , the corresponding statement is executed , and the entire structure is terminated.

If all the expressions are not true, the statement of the else part is executed .

 switch

The statement of multiple decision making in another place is switch . He tests

21

whether the value of the expression is the same as one of many constants. According

to this, the corresponding statement is executed , and the writing is as follows :

Switch (expression)

{

 Case const-expr : statement

 Case const-expr : statement

 Default : statement

}

During which you can have a lot of case , every one case must have after a

constant and is an integer , in addition to a man named default: , but only

a default . Performing switch value calculation formula of, sequentially from top to

bottom and then compare case constant value after this, if equal, from the case after

the statement execution continues, if all does not meet the case , the implementation

of default of statement . Please note that if the default misspelled will be treated as

ordinary can goto bit standard .

Execute switch when, if found for the case will execute it, and do not jump

out switch block, the following lines :

Switch (expression)

{

Case 1 :

Statement_1

Case 2 :

Statement_2

Case 3 :

Statement_3

Default :

Statement_4

}

Suppose expression calculated value of 2 , according to the above code will be

executed . 3 th Statement , respectively, and statement_2, statement_3,

statement_4 . To end the switch block after executing statement_2 , add

the break keyword to indicate the end of the switch block, as follows :

22

Switch (expression)

{

Case 1 :

Statement_1

 Break ;

Case 2 :

Statement_2

 Break ;

Case 3 :

Statement_3

 Break ;

Default :

Statement_4

}

 for

for return to ring format syntax is as follows :

 For (expr1; expr2; expr3)

 Statement

Syntax for brackets expr1, expr2, expr3 are expression (note therebetween separated

by a semicolon) . The operation process is as follows :

When expr2 is false , the for loop is ended . Further, for the exprl, expr2, expr3 , Jieke

omitted, but expr2 is omitted, the test results would be considered to true , formed

endless return ring, the following :

For (; ;)

{

Statement

}

To jump off the loop, use break .

23

 while

while back loop in the following format :

While (expression)

 Statement

The operation process is as follows :

Only when the expression is false when, before the end of the back loop. You can also

use BREAK , to end while back loop. The infinite loop of while is written as follows :

While(1)

Statement

 do – while

do-while back loop in the following format :

Do

Statement

While (expression)

Do-while and the while behavior are just the opposite. While the first is to judge

the expression to be the statement , and the do-while is to make the statement before

the expression is evaluated . The do-while operation flow is as follows :

You can use BREAK , to end while back loop.

 break and continue

 Sometimes it is convenient to leave in the loop, break is to provide early, or ,

do-while to leave early, or escape the switch block. Note however that break leaving

only the innermost back loop or switch (ie break where that layer) . For

example, break in the bilayer for the

I32_T m, n;

I32_T result = 0;

24

For (m=0 ; m < 10 ; m++)

{

For(n=0; n<10 ; n++)

{

 If(n==5)

{

 BREAK; // escape the second one for back loop

 }

 Result += 1;

}

}

The second one for back inside the circle, to perform n == 5 , the will come out, thus

double back lap will result + = 1 performed 50 times.

And break Correspondingly the Continue , it does not leave the circuit, but this

time to immediately stop the loop and jumps to test back to the local loop, in order to

decide whether the next back to the circle. In for back loop is to

jump expr3 place. continue only for back circle, does not apply Switch . Examples are

as follows :

I32_T m;

For(m=0 ; m <50 ; m++)

{

If ((m % 2) == 0)

{

 Continue; / / ignore m is a multiple of 2

 }

 Statement

}

In the above example, the statement is only executed when m is not a multiple of 2 .

25

 goto and label

Goto and label can only be used within a function, the format is as follows

Void main()

{

Goto label;

Statement

Label :

 Statement

}

Goto should be followed by the label name, followed by a colon with a label , as

shown in the following example

 Goto ERROR;

 Statement_1

 Statement_2

ERROR:

 Statement_3

When the goto ERROR is executed , it will immediately jump to the ERROR and start

executing statement_3 without executing statement_1, statement_2 .

In theory, goto is unnecessary, but in some cases it is suitable to use goto . The

most common is in very deep nested back to forgo treatment circle, for example, two

or more immediately end more layers of back lap, then break it quite difficult to use,

so the break only to jump off a layer of back ring, So the wording is as follows :

For(expr1 ; expr2; expr3)

{

For(expr3; expr4; expr5)

{

If (disaster)

 Goto ERROR;

 }

}

26

ERROR:

Statement

The label can be attached to any statement before the goto can jump anywhere in the

function. Programs that use goto are usually not only difficult to read but also difficult

to maintain, but can be used as appropriate.

5. Function

 Function (function) is an independent program units. Using functions can break

down large computational work into smaller jobs, and it's easy to use other people's or

previously written functions without having to rewrite them. The appropriate function

hides the details of the operation. The person using the function does not have to

know the details, making the whole program clearer and easier to modify.

 User-defined function

The format of the function is as follows :

Return-type function-name (parameter declarations)

{

Statements

}

The return type can be F64_T, I32_T...., etc., and the void type means that this

function has no return value. Except for void , all other types must return the

corresponding type in the function. The format of the return is as follows :

 Return expression;

In which expression of the type required and return type same as or deemed

illegal. Parameter declarations are the parameters passed in using the function, and the

format is as follows :

27

 Type variable-name

The incoming parameters can be multiple, separated by commas ' , ' , as in the

following example :

I32_T add (I32_T a, I32_T b)

{

Return a + b;

}

In addition, parameter declarations can also be written, as follows :

I32_T get_ value()

{

Return 10;

}

A program is a collection of variables and functions. Communication between

functions can be done through parameters, global variables , and function values. The

following sample code for a fee type sequence (Fibonacci Sequence) ,

I32_T fib(I32_T n)

{

If(n==0) return 0;

If(n==1) return 1;

Return (fib(n-1) + fib(n-2));

}

Void main()

{

I32_ T value ;

 Value = fib(10); // the 10th value of the fee sequence

}

The above fib function calls its own function, which is called recursion . In some

algorithms, such as quick sort , it can make the code simple and easy to understand.

28

 NRPL built-in functions

NRPL has built-in moving objects, object member variables and related data

structures for motion control of equipment or robots. Users do not need to set or

announce to call directly. For detailed description of built-in object parameters, please

refer to " NexMotion NRPL Directive". Manual ".

6. Pointer and array

Index (pointer) is also a variable, kept the address of another variable (address) ,

use the index to make the program more streamlined and efficient, but if the improper

use of indicators may also lead to program crash (Crash) .

 Pointer and address

A pointer is simply a variable that stores a memory address .

Each of a memory cell (memory cell) are consecutive numbers or called

addresses (address) , can be accessed individually or several consecutive information

units as a group. Each a cell size of one byte (byte) can put a U8_T size variable, and

the four consecutive units (4 bytes) can be

placed U32_T or I32_T . The NRPL indicator type is a size of 4 consecutive bytes ,

mainly used to store an address .

The following example shows how to declare indicator variables :

U8_T * value_ptr; / / declare the indicator type, use type (U8_T) followed by * to

indicate

U8_T value = 5; // declare U8_T type and initialize it to 5

U8_T value_2 = 0; // declare U8_T type and initialize to 0

The above variable declaration can be illustrated by the following figure,

when U8_T *value_ptr is declared , where U8_T* indicates that the variable is

29

a U8_T indicator type, and the memory bit is at 0x1000 . Declaring U8_T value =

5 indicates that the memory address of the system assigned value is 0x2000 and the

content is 5 .

Using the unit operator & can obtain the address of the object (usually the address of

the variable) , called the address operation , as follows :

 value = & value_ptr; // the value of the address (0x2000) saved to value_ptr

After the execution, as shown in the figure below, the address of the value is set to the

indicator variable value_ptr , and the value_ptr is pointed to the value . This unit

operator & can only be used for objects in the memory , ie elements of variables

or arrays. Both the constant and the expression cannot get the address.

The unit operator * is an indirection or an operation

symbol called dereferencing . Use indirect addressing as follows :

 Value_2 = *value_ptr; // to the address stored in value_ptr , and take the content

value of U8_T

Here * value_ptr , and value_ptr content is 0x2000 , thus can be considered * 0x2000 ,

which operating operation process is to

address 0x2000 taken U8_T patterns (due value_ptr as U8_T index) of the content

value, the value 5 . Execute the above expression, as shown below :

In addition to the value, the indicator can also specify the address setting content, as

follows :

 *value_ptr = 10 ;

Since *value_ptr is written to the left of the equal sign, it is regarded as the content

value set to address 0x2000 . After the execution, as shown below :

 The arguments of pointer and functions

Argument function (argument) is a method by value (call by value) function is

called with no way to directly change the function called by coming

variables. Suppose you want to reverse the two variables, use the swap function to do

30

this, and write as follows :

 Swap(a, b);

Can not achieve the purpose, the swap function at this time is implemented as

follows :

void swap(I32_T x, I32_T y)

{

x = x ^ y;

 y = x ^ y;

 x = x ^ y;

}

Since call by value is used , swap cannot change the contents of a and b . It

just reverses the copied version of a and b . After leaving the function, it is equivalent

to nothing.

 The correct way is to reverse the content values of a and b , that is, to reverse the

content value of the memory. Therefore, using the indicator method, the

memory addresses of a and b are passed in , as follows.

 Swap(&a, &b);

Using the unit operator & to obtain the variable address, &a is the indicator pointing

to a . However, this is not enough. The parameter type of the swap function should

also be declared as the corresponding indicator type, and accessed by indirect

reference. The method is as follows :

Void swap(I32_T *px, I32_T *py)

{

*x = *x ^ *y;

 *y = *x ^ *y;

 *x = *x ^ *y;

}

31

 Array

Declaring an Array variable is a collection of the same type of variables

in a contiguous memory space. Array provides a simple way to represent similar

information items, which is provided in the same variable name

with injection subscript (subscript) represents in which individual data items.

To declare an array, you can use the following syntax:

Variable type array name [element number];

Here's an example :

U8_T a [. 5]; // declare a is a continuous . 5 th U8_T size of the space

Defines a a size there . 5 th U8_T array size is a continuous memory space,

respectively, a [0], a [. 1] ~ a [. 4] , as shown below :

If a_ptr is declared as an indicator of U8_T , as follows :

 U8_T *a_ptr;

The memory configuration is as follows :

Set a_ptr :

 A_ptr = &a[0]; // give the address of a[0] (0x1000) to a_ptr

The memory configuration is as follows :

At this time a_ptr will point to a [0] space, so a [0] can use * a_ptr to access, as

 x = *a_ptr; // *0x1000 is equivalent to a[0];

32

If a_ptr points to an element of the array, then a_ptr + 1 points to the next element of

the array. The algorithm is as follows:

 A_ptr + (1 * sizeof(U8_T)) => 0x1000 + (1 * 1) => 0x1001

Because a_ptr is an indicator of U8_T , and U8_T is 1 btye . To take a third one of

array elements, worded as follows :

 x = * (a_ptr + 2) ; //a_ptr+2 calculates the address to be 0x1002 , which is

equivalent to a[2]

 The general rules for adding or subtracting indicators can be as follows :

 Ptr + expression or ptr - expression

The expression expression here must be an integer, and the addition algorithm of

the index is as follows :

 Ptr + (expression * sizeof(type))

ptr + expression is ptr next integer count number addresses elements, that is to say

automatically expression Size multiplied by the element (in byte units) . In

addition, the value of the array name is equal to the address of the 0th element , if

executed :

 A_ptr = & a[0];

Equal

 A_ptr = a;

In other words, write a and & a [0] is the same, whereas a [1] can also be written as *

(a + 1) , and therefore can be a seen as pointing U8_T indicators, so as long as the

index patterns are variable array may be injection subscript (subscript) [i] is accessed,

the following examples :

 A_ptr[0] = 10 ; // is equal to a[0]=10

 *(a + 1) = 20 ; // is equal to a[1]=20;

 *(a_ptr + 2) = 30; // equal to a[2]=30;

33

 a[3] = a_ptr[0]; // equal to a[3] = a[0]

If the array name a is passed to the function, the fact upload is &a[0] , which is

also the address of a[0] (0x1000) . The following example will initialize the array

with the function :

Void init_a_array (U8_T *ptr)

{

Ptr[0]=0;

 Ptr[1]=1;

 Ptr[2]=2;

 Ptr[3]=3;

 Ptr[4]=4;

}

 Address calculation

If the index p points to an array element, the p ++ make p points to the next

element, and p + = i would p pointing down count i th element. These forms are the

simplest indicator calculations or address calculations.

In some cases only index comparison, if p and q are the same point one array,

relational operators (! ==, =, <, <=,>,> = .. , etc.) can be used, for example :

 p < q

Any indicator can do == and != . But if you point to a different array, comparisons

other than == and != are meaningless. Indicators can also be added or subtracted by

an integer (6.3 has the addition and subtraction of the indicator) , as follows :

 P + n

Representative p element pointed next count n th address elements, but also

automatically is multiplied by each of the one element size. The final legal indicator

operation is summarized as follows :

l Point to the mutual setting of the same type of indicator (assign)

l add or subtract an integer from the indicator

34

l Indicators pointing to elements of the same array can be compared with each

other

l Indicators pointing to different arrays can be compared equally or unequally

 Multi-dimensional array

Multi microarray may be seen as an array of arrays, e.g.

declared 3x3 in 2 -dimensional array, as follows

 U8_T var[3][3];

Expressed in the figure, as follows :

If accessing var[1][2] , access the location of the image below

When U8_T var[3][3] is declared , a continuous 3x3 memory space is configured , as

follows :

When var[1][2] is taken , its address algorithm is var+ 1*sizeof(U8_T)*3+

2*sizeof(U8_T) is equal to 0x100+1*1*3+2*1=0x105 . Alternatively, you can use the

indicator to access using one-dimensional representation.

 U8_T *var_ptr = & var[0][0];

At this time , the content value of var_ptr is 0x100 . If var_ptr is to be used

to take var[1][2] , it is represented as var_ptr[1*3+2] => var_ptr[5] and its address

algorithm is var_ptr + 5 * sizeof (U8_T) = 0x100 + 5*1 = 0x105 .

 Array initialization

The initialization paradigm is given when the one-dimensional array is declared, as

follows :

U8_T var[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8};

Initialization is done by writing the values in braces and separating them with

35

commas. In addition to two-dimensional initialization, you can do the following :

U8_ T var [2][5] =

{

{ 1 , 2, 3, 4, 5 } , //var[0][0] ~ var[0][4]

 { 11 , 22, 33, 44, 55 } //var[1] [0] ~ var[1][4]

};

Use the braces in brackets to divide the dimensions , separated by commas, and sort in

according to the memory sort, such as the following initialization :

U8_ T var [2][5] =

{

{ 1 , } , //var[0][0]

 { 11 , 22, } //var[1][0] , var[1][1]

};

The above initialization will only be initialized var[0][0], var[1][0], var[1][1] , and the

rest will be unknown.

7. Structure

Structure (Structure) is composed of one or more variables, each variable can be

a different type, a name can be set through the easily processed together. Structures

can be used to organize complex data and have significant benefits in large programs

because it allows a group of related data to be treated as a single data unit.

 Structure definition

Let's take an example to illustrate how to define a structure. In graphics

processing we use two integer x coordinates and y coordinates to describe a point :

36

We can point (Point) and other elements of x and y is defined the following structure :

Struct point

{

I32_T x;

I32_T y;

} ;

The declaration of the structure begins with the keyword struct , followed by the

structure naming, followed by a pair of braces to hold the announcement. Variables

within the structure become members of the structure. Structure member names can

be distinguished from common variables (non-structural members) by the same

name, because they can be distinguished by context. In addition, please note that the

type of the structure member variable cannot be the type of the structure itself, as

follows :

Struct point

{

I32_T x;

I32_T y;

Point p; // not legal because the type is the structure itself

};

After the struct type is established , the declaration of general variables can be

made as follows.

 Point pt;

This means that pt becomes a variable with a point structure. The structure

variable can also give an initial value when it is declared . The method is to follow the

equal sign and a pair of braces to clamp the corresponding value, as follows :

 Point pt = {100, 200};

When you want to use members in a structure in an expression, the rules are as

follows :

 Structure variable name . Member Name

37

Origin members use to access, such as pt.x or pt.y .

The structure can be a nested structure, that is, the structure can further include a

structure. Here is an example :

For example, a rectangle can be represented by two diagonal points, as follows :

Define the rectangular structure rect as follows :

Struct rect

{

Point pt1;

 Point pt2;

};

The structure rect contains two members : pt1, pt2 are all point structures, declared as

follows

 Rect screen;

Then write the following :

 Screen.pt1.x

The x coordinate of point pt1 representing screen

 Structures and functions

The operations that the structure can use include :

l Copy the entire structure or set values to the entire structure

l Use & operator to get the structure address

l use structure members (values)

Copying and setting includes the transfer of arguments between functions and

38

the return of structures by functions.

The following is an example of a function return structure :

Point make_point(I32_T x, I32_T y)

{

 Point temp;

 Temp.x = x;

 Temp.y = y;

 Return temp;

}

The make_point() function passes in two integers and returns a point structure.

The make_point() function is used to dynamically give the initial value of any point

structure. The example is as follows :

Rect screen;

Point middle;

Screen.pt1 = make_ point(0, 0);

Screen.pt2 = make_ point(100, 100);

Middle = make_point ((screen.pt1.x screen.pt2.x +) / 2,

 (screen.pt1.y + screen.pt2.y)/ 2) ;

You can also use the structure as an input parameter to a function. Here is an

example :

Point add_point(point p1, point p2)

{

P1.x += p2.x;

 P1.y += p2.y;

 Return p1;

}

In this case, the parameters and function return values are structures . Since the

arguments of the function are passed in by " call by value" , the variables passed by

the caller are not changed.

39

If you want a large structure passed to the function, available indicators point to

this structure (pointer) is transmitted rather than copying the entire structure, to

improve the efficiency of the program. The following is an example of an

announcement of structural indicators :

Point pt ;

Point *pp = &pt;

(*pp).x = 10;

(*pp).y = 20;

Declaring pp as an indicator points to

a point structure pt . And (*pp).x and (*pp).y are values for their members . The

parentheses in (*pp).x are necessary because the priority of the dot (.) operator

is higher than the value of the asterisk (*) operator.

 Structural indicator member values can also use (->) symbols, for

example (*pp).x can be represented by pp -> x , note that the -> symbol is a sign

followed by a minus sign.

Pp->x = 10;

Pp->y = 20;

The following example shows the use of structural indicators for the input parameters

of a function : using the indicator structure to calculate the intermediate point example

Point middle_point(point *p1, point *p2)

{

Point temp;

Temp.x= (p1->x + p2->x)/2;

Temp.y =(p1- >y + p2->y)/2;

Return temp;

}

40

8. Keywords

The following words are reserved as keywords identification purposes, is not

available to for other purposes.

F64_T U32_T I32_T U16_T I16_T U8_T

I8_T Break Case Continue Default Do

Else For Goto If Return Struct

Switch Void While

	Content
	1. Introduction to NRPL
	1.1. System Architecture
	1.2. Motion objects
	1.3. Overloading
	1.4. Tasks and motion objects
	1.5. Default object

	2. Program structure
	2.1. Entry point
	2.2. Statement
	2.3. Operator
	2.4. Comments

	3. Variables and expressions
	3.1. Variable
	3.2. Data type
	3.3. Constant value
	3.3. Constant value
	3.4. Variable declaration
	3.5. Arithmetic Symbols
	3.6. Relational and logical operators
	3.7. Type conversion
	3.8. Increment and decrement operators
	3.9. Bit operator
	3.10. Setting operators and expressions
	3.11. Conditional expression
	3.12. Operational symbol precedence

	4. Control process
	4.1. Statement and block
	4.2. if – else
	4.3. switch
	4.4. for
	4.5. while
	4.6. do – while
	4.7. break and continue
	4.8. goto and label
	4.8. goto and label

	5. Function
	5.1. User-defined function
	5.2. NRPL built-in functions

	6. Pointer and array
	6.1. Pointer and address
	6.2. The arguments of pointer and functions
	6.3. Array
	6.4. Address calculation
	6.5. Multi-dimensional array
	6.6. Array initialization

	7. Structure
	7.1. Structure definition
	7.2. Structures and functions

	8. Keywords
	8. Keywords
	8. Keywords

