

NexMotion Real-time Programming Language
(NRPL)

Instructions Manual

Version: 1.1

Date: Oct. 7, 2019

NEXCOBOT Inc.

www.nexcobot.com

Copyright © 2019 NEXCOBOT Inc. ii All Rights Reserved.

Copyright Statement and Disclaimer

The contents contained in this document are the proprietary property of

NexCOBOT International Co., Ltd. (NexCOBOT hereafter) and is subject to

the protection of intellectual property law (including, but not limited to the

Copyright Act). The use of any material in relation to this document without the

prior authorization of NexCOBOT is considered infringement. Without the

written approval of NexCOBOT in advance, this document or any part of it shall

not be photocopied, sold, distributed, modified, published, stored or otherwise

used.

To keep this document and its contents correct and complete, NexCOBOT

reserves the right to change or revise the document at any time without further

notification.

Operating machine or equipment has a certain level of danger. It is the user’s

responsibility to pay special attention and have safety protection in place

before operating any machine or equipment. NexCOBOT shall not be held for

any and all direct or indirect damage or loss to the equipment mentioned in this

document due to the use for a purpose other than the intended.

Copyright © 2019 NEXCOBOT Inc. iii All Rights Reserved.

Revision History

Rev. Description

1.0 First released.

1.1 Typos correct.

Copyright © 2019 NEXCOBOT Inc. iv All Rights Reserved.

Contents

Copyright Statement and Disclaimer ... ii

Revision History .. iii

Contents .. iv

1. Data Type ... 1

1.1. Basic Data Type ... 1

1.2. Inner Structure Data Type .. 1

 Structure: AP_T ... 1

 Structure: CP_T ... 2

 Structure: CFG_T .. 2

 Structure: EP_T ... 5

 Structure: RAP_T .. 6

 Structure: RCP_T .. 6

 Structure: RP_T ... 7

2. Built-in Functions ... 8

2.1. System Functions .. 8

 Digital I/O control ... 8

2.1.1.1. DOUT: Digital Output Setting ... 8

2.1.1.2. GDOUT: Get Digital Output ... 11

2.1.1.3. GDIN: Get Digital Input .. 12

2.1.1.4. WDIN: Wait For The Digit Input ... 13

 Analog I/O control .. 15

2.1.2.1. AOUT: Analog Output Setting .. 15

2.1.2.2. GAIN: Get Analog Input Signal .. 18

2.1.2.3. GAOUT: Get Analog Output Signal .. 19

2.1.2.4. WAIN: Waiting for the Analog Input Value Meets the Set Range 20

 Task Synchronize .. 22

2.1.3.1. WaitEvent: Waiting Event .. 22

2.1.3.2. SetEvent: Set Event to Signaled State .. 24

2.1.3.3. ResetEvent: Reset Event to Un-signaled State ... 26

 Math ... 27

2.1.4.1. cos ... 27

2.1.4.2. sin .. 28

2.1.4.3. tan.. 29

2.1.4.4. acos ... 30

Copyright © 2019 NEXCOBOT Inc. v All Rights Reserved.

2.1.4.5. asin .. 31

2.1.4.6. atan.. 32

2.1.4.7. atan2.. 33

2.1.4.8. cosh ... 34

2.1.4.9. sinh .. 35

2.1.4.10. tanh.. 36

2.1.4.11. exp ... 37

2.1.4.12. ldexp .. 38

2.1.4.13. log .. 39

2.1.4.14. log10 .. 40

2.1.4.15. pow .. 41

2.1.4.16. sqrt... 42

2.1.4.17. ceil ... 43

2.1.4.18. floor.. 44

2.1.4.19. fmod... 45

2.1.4.20. abs ... 46

2.1.4.21. fabs .. 47

2.1.4.22. deg2rad ... 48

2.1.4.23. rad2deg ... 49

2.1.4.24. sign .. 50

 Others .. 51

2.1.5.1. printf: Message Output .. 51

2.1.5.2. WAIT: Waiting For A Specific Time .. 52

2.2. GROUP and Commands .. 53

 GROUP Motion Commands .. 53

2.2.1.1. PTP: Perform a Fast Point-to-point Moving of Each Axis of the Group 53

2.2.1.2. LIN: Execute Linear Motion of TCP In the Cartesian Coordinate 59

2.2.1.3. ARC: Execute Arc Motion of TCP Under the Cartesian Coordinate 63

 Group Parameters Setting Commands ... 67

2.2.2.1. AXVEL: Velocity ... 67

2.2.2.2. AXACC: Acceleration ... 68

2.2.2.3. AXDEC: Deceleration .. 70

2.2.2.4. AXJERK: Jerk .. 71

2.2.2.5. VEL: Linear Velocity .. 72

2.2.2.6. ACC: Linear Acceleration... 73

2.2.2.7. DEC: Linear Deceleration .. 74

2.2.2.8. JERK: Linear Jerk .. 75

2.2.2.9. OVEL: Orientation Velocity .. 76

Copyright © 2019 NEXCOBOT Inc. vi All Rights Reserved.

2.2.2.10. OACC: Orientation Acceleration .. 77

2.2.2.11. ODEC: Orientation Deceleration .. 78

2.2.2.12. OJERK: Orientation Jerk ... 79

2.2.2.13. TOOL: Tool Number... 80

2.2.2.14. TDAT: Tool Setting ... 82

2.2.2.15. BASE: Base Number ... 85

2.2.2.16. BDAT: Base Setting ... 88

Copyright © 2019 NEXCOBOT Inc. 1 All Rights Reserved.

1. Data Type

1.1. Basic Data Type

NexMotion Real-time Programming Language (NRPL) provides the following

basic data types:

Type C/C++

Prototype

Description Byte Range

U8_T unsigned char Unsigned

integer

1 0–255

U16_T unsigned short Unsigned

integer

2 0–65535

U32_T unsigned int Unsigned

integer

4 0–4294967295

I8_T char Signed integer 1 -128–127

I16_T short Signed integer 2 -32768–32767

I32_T int Signed integer 4 -2147483648–2147483647

F64_T double Double-precision

float point

8 IEEE-754, it accommodates 15

digits after the decimal point.

1.2. Inner Structure Data Type

 Structure: AP_T

AP_T is the description of the position of each axis of the robot group with the

axis coordinate system.

• Structure definition

• Member: F64_T A0~A7 describes the position of each axis of GROUP.

struct AP_T

{

 F64_T A0;

 F64_T A1;

 F64_T A2;

 F64_T A3;

 F64_T A4;

 F64_T A5;

 F64_T A6;

 F64_T A7;

};

Copyright © 2019 NEXCOBOT Inc. 2 All Rights Reserved.

 Structure: CP_T

CP_T is the description the position of tool endpoint of the robot group with the

Cartesian coordinate system.

The tool endpoint of a coordinate system has maximum six degrees of

freedom and the movement parameters are notated using X, Y, Z, A, B, and C.

Positions: X, Y, and Z follow the right-hand rule of the Cartesian coordinate

system.

Orientation: A, B, and C are Euler angle of intrinsic Z-Y-X representation,

sequentially rotate Z, Y, and X axes.

• Structure definition

struct CP_T

{

F64_T X;

F64_T Y;

F64_T Z;

F64_T A;

F64_T B;

F64_T C;

};

• Member

Member Cartesian Coordinate System

Position

Unit of Length

F64_T X X-axis mm

F64_T Y Y-axis mm

F64_T Z Z-axis mm

Member Cartesian Coordinate System

Rotation

Unit of Degree

F64_T A Z-axis mm

F64_T B Y-axis mm

F64_T C X-axis mm

 Structure: CFG_T

CFG_T is the description of the relationship between the tool endpoint position

of the robot group and each axis coordinate.

Copyright © 2019 NEXCOBOT Inc. 3 All Rights Reserved.

You can use Cartesian coordinate (CP_T) to describe the position of a robot

when you run motion commands such as PTP, LIN, etc. However, some

Cartesian coordinates can be generated by the controller (reverse kinematics)

to calculate more than one solution. This means that there can be several

robot poses at the same endpoint position. In order to correctly select a

specific pose from multiple sets of posture, additional information (CFG_T) is

used to record the angular range of each axis of the robot.

CFG_T definition methods:

1. Angular range of axis

2. Types of robot posture

Also, the different mechanism configuration of a robot has a different definition

of CFG_T. Refer to the table below for details.

Mechanism

Type

C1 C2 C3 C4

AR6 Joint 1 (Axis

#0)

Joint 4 (Axis #3) Joint 6 (Axis

#5)

Posture type

SCARA Joint 1 (Axis

#0)

Joint 4 (Axis #3) None Joint 2 (Axis #1)

DELTA None Joint 4 (Axis #3) None None

If CFG_T:C1 is set to 10, it means that the CFG_T setting is not referenced,

and the controller automatically selects an optimal posture when calculating.

• Structure definition

• Member

○ I32_T C1: Parameter of axis angular range. If set to 10, the CFG_T

setting is ignored.

○ I32_T C2: Parameter of axis angular range

○ I32_T C3: Parameter of axis angular range

○ I32_T C4: Parameter of axis angular range or posture type

struct CFG_T

{

I32_T C1;

I32_T C2;

I32_T C3;

I32_T C4;

};

Copyright © 2019 NEXCOBOT Inc. 4 All Rights Reserved.

Cfx = 0 Cfx = 1

Cfx = 2 Cfx = 3

Cfx = 4 Cfx = 5

Cfx = 6 Cfx = 7

Copyright © 2019 NEXCOBOT Inc. 5 All Rights Reserved.

The parameters of axis angular range are defined as follows:

Value Meaning

0 0 to 90 degree

1 90 to 180 degree

2 180 to 270 degree

3 270 to 360 degree

-1 0 to -90 degree

-2 -90 to -180 degree

-3 -180 to -270 degree

Posture Type

Value Wrist center relative

to axis 1

Wrist center relative

to lower arm

Axis 5

angle

0 In front of In front of Positive

1 In front of In front of Negative

2 In front of Behind Positive

3 In front of Behind Negative

4 Behind In front of Positive

5 Behind In front of Negative

6 Behind Behind Positive

7 Behind Behind Negative

 Structure: EP_T

EP_T describes the external axis coordinates associated with the robot group.

• Structure definition

struct EP_T

{

 F64_T E0;

 F64_T E1;

 F64_T E2;

 F64_T E3;

 F64_T E4;

 F64_T E5;

};

• Member: F64_T E0~E5 describes the position of external axes.

Copyright © 2019 NEXCOBOT Inc. 6 All Rights Reserved.

 Structure: RAP_T

RAP_T describes the position of each axis of the robot group and its

associated external axis.

• Structure definition

• Member

○ AP_T AP is the position of each axis of group. Please refer to the

structure definition of AP_T.

○ EP_T EP is the position of external axis. Please refer to the structure

definition of EP_T.

 Structure: RCP_T

RCP_T describes the location of the Cartesian coordinates of the robot group

and its associated external axis coordinates.

• Structure definition

• Member

○ CP_T CP is the endpoint position of Cartesian coordinate. Please

refer to the structure definition of CP_T.

○ CFG_T CFG is the setting of relationship between Cartesian

coordinates and axis coordinates. Please refer to the structure

definition of CFG_T.

○ EP_T EP is the position of external axis. Please refer to the structure

definition of EP_T.

struct RAP_T

{

AP_T AP;

EP_T EP;

};

struct RCP_T

{

 CP_T CP;

CFG_T CFG;

EP_T EP;

};

Copyright © 2019 NEXCOBOT Inc. 7 All Rights Reserved.

 Structure: RP_T

RP_T describes the composite position of the robot group, including the axis

coordinates and endpoint of Cartesian coordinates, which are generally used

in the point teaching.

• Structure definition

struct RCP_T

{

 CP_T CP;

 CFG_T CFG;

 EP_T EP;

 AP_T AP;

};

• Member

○ CP_T CP is the endpoint position of Cartesian coordinate. Please

refer to the structure definition of CP_T.

○ CFG_T CFG is the setting of relationship between Cartesian

coordinates and axis coordinates. Please refer to the structure

definition of CFG_T.

○ EP_T EP is the position of external axis. Please refer to the structure

definition of EP_T.

○ AP_T AP is the position of each axis of group. Please refer to the

structure definition of AP_T.

Copyright © 2019 NEXCOBOT Inc. 8 All Rights Reserved.

2. Built-in Functions

2.1. System Functions

 Digital I/O control

2.1.1.1. DOUT: Digital Output Setting

Usage

DOUT() is used to control the digital output (ON or OFF).

Example 1

1. Move to P1 in PTP mode

2. Set DO Ch#0 to ON

3. Move to P2 in PTP mode

4. Set DO Ch#0 to OFF

DOUT() can also be used to set up the delay time (DT).

Example 2

1. Move to P1 in PTP mode.

2. Set Ch#0 ON after a 1000 ms (milliseconds) delay.

3. Move to P2 in PTP mode.

After the DOUT() output setting is established, you can set the waiting time

(WT) separately.

Example 3

1
2
3
4
5

PTP(P1);
DOUT(0, 1); //Ch#0 set ON
PTP(P2);
DOUT(0, 0); //Ch#0 set OFF

1
2
3
4
5

PTP(P1);
DOUT(0, 1, DT=1000); //Delay 1000ms, Ch#0 set ON
PTP(P2);

1
2
3
4
5

PTP(P1);
DOUT(0, 1, WT=1000);
PTP(P2);

Copyright © 2019 NEXCOBOT Inc. 9 All Rights Reserved.

1. Move to P1 in PTP mode.

2. After setting the Ch#0 to ON, wait for 1000 ms and return.

3. Move to P2 in PTP mode.

Example 4

1. Move to P1 in PTP mode.

2. After setting the Ch#0 to ON, wait for 1000 ms, set Ch#0 to OFF(REV)

and return.

3. Move to P2 in PTP mode.

Example 5

Example 5 can be simplified as below:

1
2
3
4
5

PTP(P1);
DOUT(0, 1, WT=1000, REV);
PTP(P2);

1
2
3
4
5
6
7

PTP(P1);
WAIT(1000); //Wait 1000 ms
DOUT(0, 1); //Set DO#0 ON
WAIT(1000); //Wait 1000 ms
DOUT(0, 0); //Set DO#0 OFF
PTP(P2);

1
2
3
4
5
6
7

PTP(P1);
DOUT(0, 1, DT=1000, WT=1000, REV);
PTP(P2);

Copyright © 2019 NEXCOBOT Inc. 10 All Rights Reserved.

Command

DOUT (CH, VAL, [DT], [WT] , [REV]);

Command Notes

CH • Specify the digital output channel number

• Data type: I32_T

• CH number: from 0 to the actual maximum number of the

system

VAL • Set to ON or OFF

• Data type: I32_T

• VAL=0 (OFF)，VAL=1 (ON)

[DT] • Delay time. This parameter can be ignored.

• Data type: I32_T

• Millisecond. After command is executed, it will delay the

specified time and then set DO.

• If this parameter is set to less than 0 or not set, it means no

delay.

[WT] • Wait time. This parameter can be ignored.

• Data type: I32_T

• Millisecond

• After command sets the DO output, a wait time can be set. It is

equivalent to adding a WAIT() after this command.

• If this parameter is set to less than 0 or not set, it means no

delay.

[REV] • The flag of reverse output signal. This parameter can be

ignored.

• Data type: Flag constant

• If the wait time is set, the REV flag can be set separately. After

wait time, the command will reverse the output signal.

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 11 All Rights Reserved.

2.1.1.2. GDOUT: Get Digital Output

Usage

GDOUT() is used to read the status of the digital output.

Example

Command

I32_T GDOUT (CH);

Command Notes

CH • Specify the digital output channel number.

• Data type: I32_T

• CH number, from 0 to the actual maximum number of the

system.

Return Value

Data type: I32_T

• 0: DOUT OFF

• 1: DOUT ON

Related Information

1

2

3

4

5

I32_T DO_0;

DO_0 = GDOUT(0);//Get DO#0 state

Copyright © 2019 NEXCOBOT Inc. 12 All Rights Reserved.

2.1.1.3. GDIN: Get Digital Input

Usage

GDIN() is used to get the status of digital input.

Example

Command

I32_T GDIN (CH);

Command Notes

CH • Specify the digital output channel number.

• Data type: I32_T

• CH number, from 0 to the actual maximum number of the

system.

Return Value

Data type: I32_T

• 0: DOUT OFF

• 1: DOUT ON

Related Information

1

2

3

4

5

I32_T DI_0;

DI_0 = GDIN(0);//Get DI#0 state

Copyright © 2019 NEXCOBOT Inc. 13 All Rights Reserved.

2.1.1.4. WDIN: Wait For The Digit Input

Usage

WDIN() is used to wait for the digit input until the status matches the setting.

Example 1

After waiting for state of DI#5 to be ON, execute PTP(P0).

Also, WDIN() can be used to set the time (millisecond) for timeout.

Example 2

Command

I32_T WDIN (CH, VAL, [T]);

Command Notes

CH • Specify the digital output channel number

• Data type: I32_T

• CH number: from 0 to the actual maximum number of the

system

VAL • Waiting for state of digital input

• Data type: I32_T

• VAL=0 (OFF)，VAL=1 (ON)

[T] • Set time out time. This parameter can be ignored.

• Data type: I32_T

• Millisecond. . If you don’t specify the T or T is less than 0: wait

for state to be matched.

1

2

3

4

5

…
WDIN(5, 1);//Wait DI#5 state turn ON
PTP(P0);

1

2

3

4

5

6

7

8

9

10

11

I32_T isTimeout;
…
isTimeout =WDIN(5, 1, T=5000);//Wait DI#5 state turn ON

if(isTimeout)
{ // Wait DI#5 turn ON, timeout
 PTP(P0);
}else
{ // DI#5 state turn ON
 PTP(P1);
}

Copyright © 2019 NEXCOBOT Inc. 14 All Rights Reserved.

Command Notes

• T equals to 0: check state of DI and return immediately.

• T greater than 0: specify wait time. If the status meets the

specified value within the waiting time, it will return immediately.

If the waiting time exceeds the specified value, the timeout will

be returned.

Return Value

Data type: I32_T

The return indicates whether the waiting is successful.

• 0: Successful

• 1: Timeout

Related Information

Copyright © 2019 NEXCOBOT Inc. 15 All Rights Reserved.

 Analog I/O control

2.1.2.1. AOUT: Analog Output Setting

Usage

AOUT() controls the single analog output channel.

Example 1

1. Move to P1 in PTP mode.

2. Set AO Ch#0 to 5V.

3. Move to P2 with PTP.

AOUT() can also set the delay time (DT).

Example 2

1. Move to P1 with PTP.

2. After delay 1000ms, set AO#0 to 3.3 Volt.

3. Move to P2 with PTP.

After the AOUT() output setting is established, you can set the waiting time(WT)

separately.

Example 3

1. Move to P1 with PTP.

2. After setting AO#0 to -2.5 Volt, delay 1000ms and return.

3. Move to P2 with PTP.

1
2
3
4
5

PTP(P1);
AOUT(0, 5.0); //Set AO#0 to 5V
PTP(P2);

1
2
3
4
5

PTP(P1);
AOUT(0, 3.3, DT=1000); //Delay 1000ms, AO#0 set 3.3V
PTP(P2);

1
2
3
4
5

PTP(P1);
AOUT(0, -2.5, WT=1000);
PTP(P2);

Copyright © 2019 NEXCOBOT Inc. 16 All Rights Reserved.

Example 4

Example 4 can be simplified as below:

Command

AOUT (CH, VAL, [DT], [WT]);

Command Notes

CH • Specify the digital output channel number

• Data type: I32_T

• CH number: from 0 to the actual maximum number of the system

VAL • Set analog output value

• Data type: F64_T

• The analog output value range definition should be defined in

accordance with the AIO device of the actual system. For example,

the unit is Volt or mV.

[DT] • Delay time. This parameter can be ignored.

• Data type: I32_T

• Millisecond

• After the command is executed, it will delay the specified time and

then set the AO.

• If this parameter is set to less than 0 or not set, it means no delay.

[WT] • Wait time. This parameter can be ignored.

• Data type: I32_T

• Millisecond

• After the command sets the AO output, a wait time can be set. It is

equivalent to adding a WAIT() after this command.

• If this parameter is set to less than 0 or not set, it means no delay.

1
2
3
4
5
6
7

PTP(P1);
WAIT(1000); //Wait 1000 ms
AOUT(0, 5.0); //Set AO#0 to 5V
WAIT(1000); //Wait 1000 ms
AOUT(0, 0.0); //Set AO#0 to 0V
PTP(P2);

1
2
3
4
5
6
7

PTP(P1);
AOUT(0, 5.0, DT=1000, WT=1000);
AOUT(0, 0.0);
PTP(P2);

Copyright © 2019 NEXCOBOT Inc. 17 All Rights Reserved.

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 18 All Rights Reserved.

2.1.2.2. GAIN: Get Analog Input Signal

Usage

GAIN() gets the analog input signal.

Example

1. Declare variable: F64_T AI_0.

3. Get the analog input channel #0 value and store it in variable AI_0.

Command

F64_T GAIN (CH);

Command Notes

CH • Specify the analog input channel number.

• Data type: I32_T

• CH number: from 0 to the actual maximum number of the

system.

Return Value

Data type: F64_T

The analog input value range definition should be defined in accordance with

the AIO device of the actual system. For example, the unit is Volt or mV.

Related Information

1

2

3

4

5

F64_T AI_0;

AI_0 = GAIN(0);

Copyright © 2019 NEXCOBOT Inc. 19 All Rights Reserved.

2.1.2.3. GAOUT: Get Analog Output Signal

Usage

GAOUT() gets the analog output signal.

Example

1: Declare variable: F64_T AO_0

3: Get value of analog output channel #0 and store it in AO_0.

Command

F64_T GAOUT (CH);

Command Notes

CH • Specify the analog output channel number.

• Data type: I32_T

• CH number: from 0 to the actual maximum number of the

system.

Return Value

Data type: F64_T

The analog output value range definition should be defined in accordance with

the AIO device of the actual system. For example, the unit is Volt or mV.

Related Information

1

2

3

4

5

F64_T AO_0;

AO_0 = GAOUT(0);

Copyright © 2019 NEXCOBOT Inc. 20 All Rights Reserved.

2.1.2.4. WAIN: Waiting for the Analog Input Value Meets the Set Range

Usage

WAIN() waits for the analog input value to enter the set range.

Example 1

3: Wait until the AI#0 voltage (or current) value is greater than or equal to

5.

4: Execute PTP(P0).

WAIN() can also set the time (millisecond) for timeout:

Example 2

3: Wait until the AI#0 voltage (or current) value is greater than or equal to

5 or timeout with 5000 ms.

5: If timeout occurs, execute 7: PTP(P0).

8: If timeout doesn’t happen, execute 10” PTP(P1).

Command

I32_T WAIN (CH, [GT], [LT] [T]);

Command Notes

CH • Specify the analog input channel number

• Data type: I32_T

• CH number: from 0 to the actual maximum number of the

system

[GT] • Set the comparison range (greater or equal to). This parameter

1

2

3

4

5

…
WAIN(0, GT=5);
PTP(P0);

1

2

3

4

5

6

7

8

9

10

11

I32_T isTimeout;
…
isTimeout =WAIN(0, GT=5, T=5000);

if(isTimeout)
{
 PTP(P0);
}else
{
 PTP(P1);
}

Copyright © 2019 NEXCOBOT Inc. 21 All Rights Reserved.

Command Notes

can be ignored.

• Data type: F64_T

• Set value of GT.

Example: GT=0, when the AI value >= 0, condition is triggered.

GT=-5, when the AI value >= -5, condition is triggered.

If [LT] is set, the [GT] and [LT] conditions must be satisfied at

the same time.

[LT] • Set the comparison range (less or equal to). This parameter can

be ignored.

• Data type: F64_T

• Set value of LT.

Example: LT=0, when the AI value >= 0, condition is triggered.

LT=-5, when the AI value >= -5, condition is triggered.

• If [GT] is set, the [GT] and [LT] conditions must be satisfied at

the same time.

[T] • Set timeout time. This parameter can be ignored.

• Data type: I32_T

• Millisecond. If you don’t specify the T or T is less than 0, wait for

the state to be matched.

• T equals to 0: Check the AI condition and return.

• T greater than 0: specify the wait time. If the status meets the

specified value within the waiting time, it will return immediately.

If the waiting time exceeds the specified value, the timeout will

be returned.

Return Type

Data type: I32_T

The return indicates whether the waiting is successful.

• 0: Successful. The AI value is within the setting range.

• 1: Timeout. The AI value is not in the setting range within the waiting time.

Related Information

Copyright © 2019 NEXCOBOT Inc. 22 All Rights Reserved.

 Task Synchronize

2.1.3.1. WaitEvent: Waiting Event

Usage

WaitEvent() is used to wait for a system event to be triggered.

Example 1

 2. Wait until event 0 is triggered.

Example 2

1. Declare a variable of I32_T.

3. Wait for 1 second and report if event 1 is triggered.

5-8. Determine what behavior to perform based on the value of

‘isTimeout’.

Command

I32_T WaitEvent (EventID, TimeoutMs);

Command Notes

EventID • Specify the waiting event number.

• Data type: I32_T

• 8 Built-in events (numbers 0 to 7).

TimeoutMs • Set timeout time, milliseconds.

• Data type: I32_T

• Greater than 0: waiting time.

• Equal to 0: check event whether is triggered and return.

• Less than 0: wait until the event is triggered.

1

2

3

4

5

WaitEvent(0, -1);

1

2

3

4

5

6

7

8

9

I32_T isTimeout;

isTimeout = WaitEvent(1, 1000);

if(isTimeout)
{

}

Copyright © 2019 NEXCOBOT Inc. 23 All Rights Reserved.

Return Value

Data type: I32_T

• 0: Successful

• 1: Timeout

Related Information

SetEvent()

ResetEvent()

Copyright © 2019 NEXCOBOT Inc. 24 All Rights Reserved.

2.1.3.2. SetEvent: Set Event to Signaled State

Usage

SetEvent() sets the system event to the signaled state.

Example 1: two task synchronization.

• Task#0 controls Group#0, Task#1controls Group#1.

• After the first robot (Group#0) is in place, control the second robot

(Group#1).

1. Task#0.

3. Move Group#0 to P0.

4. Trigger Event#1.

Example 2

1. Task#1.

2. Wait until Event#1 is triggered.

3. Reset Event#1.

4. Wait a second.

5. Move Group#1 to P1.

Command

SetEvent (EventID);

Command Notes

EventID • Specify the setting event number.

• Data type: I32_T

• Eight built-in events, they are numbered from 0 to 7.

Return Value

No return value.

1

2

3

4

5

// Task#0

PTP(P0);
SetEvent(1);

1

2

3

4

5

6

// Task#1
WaitEvent(1, -1);
ResetEvent(1);
WAIT(1000);
PTP(P1);

Copyright © 2019 NEXCOBOT Inc. 25 All Rights Reserved.

Related Information

WaitEvent()

ResetEvent()

Copyright © 2019 NEXCOBOT Inc. 26 All Rights Reserved.

2.1.3.3. ResetEvent: Reset Event to Un-signaled State

Usage

ResetEvent() resets the system event to the un-signaled state.

Example 1: two task synchronization

• Execute Task#0 controls Group#0, Task#1 controls Group#1.

• After the first robot (Group#0) is in place, then control the second robot

(Group#1).

1. Task#0.

3. Move Group#0 to P0.

4. Trigger Event#1.

1. Execute Task#1.

2. Wait until Event#1 is triggered.

3. Reset Event#1.

4. Wait one second.

5. Move Group#1 to P1.

Command

ResetEvent (EventID);

Command Notes

CH • Specify the setting event number.

• Data type: I32_T

• Eight built-in events, they are numbered from 0 to 7.

Return Value

No return value.

Related Information

WaitEvent()

ResetEvent()

1

2

3

4

5

// Task#0

PTP(P0);
SetEvent(1);

1

2

3

4

5

6

// Task#1
WaitEvent(1, -1);
ResetEvent(1);
WAIT(1000);
PTP(P1);

Copyright © 2019 NEXCOBOT Inc. 27 All Rights Reserved.

 Math

2.1.4.1. cos

Usage

cos() is used to calculate cosine.

Example

Output

Command

F64_T cos (X);

Command Notes

X • To calculate the angle of cosine, expressed in radian.

• Data type: F64_T

• 1 rad = 180 / PI degrees

Return Value

Data type: F64_T

Return the cosine value of X.

Related Information

sin

tan

1

2

3

4

5

F64_T value;

value = cos(60.0 * 3.1415926 / 180.0);
printf(“The cosine of %f degree is %f\n”, 60.0, value);

The cosine of 60.0 degree is 0.50000

Copyright © 2019 NEXCOBOT Inc. 28 All Rights Reserved.

2.1.4.2. sin

Usage

sin() is used to calculate sine.

Example

Output

Command

F64_T sin (X);

Command Notes

X • To calculate the angle of cosine, expressed in radian.

• Data type: F64_T

• 1 rad = 180 / PI degrees

Return Value

Date type: F64_T

Return sine value of X.

Related Information

cos

tan

1

2

3

4

5

F64_T value;

value = sin(60.0 * 3.1415926 / 180.0);
printf(“The sine of %f degree is %f\n”, 60.0, value);

The sine of 60.0 degree is 0.866025

Copyright © 2019 NEXCOBOT Inc. 29 All Rights Reserved.

2.1.4.3. tan

Usage

tan() is used to calculate tangent.

Example

Output

Command

F64_T tan (X);

Command Notes

CH • To calculate the angle of cosine, expressed in radian.

• Data type: F64_T

• 1 rad = 180 / PI degrees

Return Value

Data type: F64_T

Return tangent value of X.

Related Information

cos

sin

1

2

3

4

5

F64_T value;

value = tan(60.0 * 3.1415926 / 180.0);
printf(“The tangent of %f degree is %f\n”, 60.0, value);

The tangent of 60.0 degree is 1.732051

Copyright © 2019 NEXCOBOT Inc. 30 All Rights Reserved.

2.1.4.4. acos

Usage

acos() is used to calculate arc cosine.

Example

Output

Command

F64_T acos (X);

Command Notes

CH • To calculate the principal value of arc cosine.

• Data type: F64_T

• 1 rad = 180 / PI degrees

Return Value

Data type: F64_T

Return arc cosine value of X.

Return Value

asin

atan

1

2

3

4

5

F64_T value;

value = acos(0.5);
printf(“The arc cosine of %f is %f radian\n”, 0.5, value);

The arc cosine of 0.5 is 1.047198 radian

Copyright © 2019 NEXCOBOT Inc. 31 All Rights Reserved.

2.1.4.5. asin

Usage

asin() is used to calculate arc sine.

Example

Output

Command

F64_T asin (X);

Command Notes

CH • To calculate the principal value of arc sine.

• Data type: F64_T

• 1 rad = 180 / PI degrees

Return Value

Data type: F64_T

Return the arc sine value of X.

Related Information

acos

atan

1

2

3

4

5

F64_T value;

value = asin(0.866025);
printf(“The arc sine of %f is %f radian\n”, 0.866025, value);

The arc sine of 0.866025 is 1.047198 radian

Copyright © 2019 NEXCOBOT Inc. 32 All Rights Reserved.

2.1.4.6. atan

Usage

atan() is used to calculate arc tangent.

Example

Output

Command

F64_T atan (X);

Command Notes

CH • To calculate the principal value of arc tangent.

• Data type: F64_T

• 1 rad = 180 / PI degrees

Return Value

Data type: F64_T

Return the arc tangent value of X.

Related Information

acos

asin

atan2

1

2

3

4

5

F64_T value;

value = atan(1.732051);
printf(“The arc tangent of %f is %f radian\n”, 1.732051, value);

The arc sine of 1.732051 is 1.047198 radian

Copyright © 2019 NEXCOBOT Inc. 33 All Rights Reserved.

2.1.4.7. atan2

Usage

atan2() is used to calculate arc tangent.

Example

Output

Command

F64_T atan2 (X, Y);

Command Notes

X • To calculate the adjacent side value of arc tangent. The unit is

self-defined.

• Data type: F64_T

Y • To calculate the opposite side value of arc tangent. The unit is

self-defined.

• Data type: F64_T

Return Value

Data type: F64_T

Return the arc tangent value of X and Y.

Related Information

acos

asin

atan

1

2

3

4

5

F64_T value;

value = atan2(10.0, -10.0);
printf(“The arc tangent for (x = %f, y = %f) is %f radian\n”, -10.0,
10.0, value);

The arc tangent for (x = -10.000000, y = 10.000000) is 2.356194 radian

Copyright © 2019 NEXCOBOT Inc. 34 All Rights Reserved.

2.1.4.8. cosh

Usage

cosh() is used to calculate hyperbolic cosine.

Example

Output

Command

F64_T cosh (X);

Command Notes

X • To calculate the hyperbolic angle of hyperbolic cosine.

• Data type: F64_T

Return Value

Data type: F64_T

Return the hyperbolic cosine value of X.

Related Information

sinh

tanh

1

2

3

4

5

F64_T value;

value = cosh(1.0);
printf(“The hyperbolic cosine of %f is %f\n”, 1.0, value);

The hyperbolic cosine of 1.000000 is 1.543081

Copyright © 2019 NEXCOBOT Inc. 35 All Rights Reserved.

2.1.4.9. sinh

Usage

sinh() is used to calculate hyperbolic sine.

Example

Output

Command

F64_T sinh (X);

Command Notes

X • To calculate the hyperbolic angle of hyperbolic sine.

• Data type: F64_T

Return Value

Data type: F64_T

Return the hyperbolic sine value of X.

Related Information

cosh

tanh

1

2

3

4

5

F64_T value;

value = sinh(1.0);
printf(“The hyperbolic sine of %f is %f\n”, 1.0, value);

The hyperbolic sine of 1.000000 is 1.175201

Copyright © 2019 NEXCOBOT Inc. 36 All Rights Reserved.

2.1.4.10. tanh

Usage

tanh() is used to calculate hyperbolic tangent.

Example

Output

Command

F64_T tanh (X);

Command Notes

X • To calculate the hyperbolic angle of hyperbolic tangent.

• Data type: F64_T

Return Value

Data type: F64_T

Return the hyperbolic tangent value of X.

Related Information

cosh

sinh

1

2

3

4

5

F64_T value;

value = tanh(1.0);
printf(“The hyperbolic tangent of %f is %f\n”, 1.0, value);

The hyperbolic tangent of 1.000000 is 0.761594

Copyright © 2019 NEXCOBOT Inc. 37 All Rights Reserved.

2.1.4.11. exp

Usage

exp() is used to calculate exponent based on nature logarithm e.

Example

Output

Command

F64_T exp (X);

Command Notes

X • Value of the exponent

• Data type: F64_T

Return Value

Data type: F64_T

Return the exponential value of X which is based on nature logarithm e.

Related Information

log

pow

1

2

3

4

5

F64_T value;

value = exp(5.0);
printf(“The exponential value of %f is %f\n”, 5.0, value);

The exponential value of 5.000000 is 148.413159

Copyright © 2019 NEXCOBOT Inc. 38 All Rights Reserved.

2.1.4.12. ldexp

Usage

ldexp() is used to calculate the exponential value based on 2 and multiplying X.

Example

Output

Command

F64_T ldexp (X, Exp);

Command Notes

X • Value of multiplier

• Data type: F64_T

Y • Value of exponent

• Data type: I32_T

Return Value

Data type: F64_T

Return the exponential value of X and Exp.

Related Information

log

pow

1

2

3

4

5

F64_T value;

value = ldexp(2.5, 4);
printf(“%f * 2^%d = %f\n”, 2.5, 4, value);

2.500000 * 2^4 = 40.000000

Copyright © 2019 NEXCOBOT Inc. 39 All Rights Reserved.

2.1.4.13. log

Usage

log() is used to calculate the logarithm value based on the nature logarithm “e”.

Example

Output

Command

F64_T log (X);

Command Notes

X • To calculate the natural argument of the natural logarithm,

this argument value has to be greater than zero.

• Data type: F64_T

Return Value

Data type: F64_T

Return nature logarithm value of X.

Related Information

log10

exp

pow

1

2

3

4

5

F64_T value;

value = log(2.5);
printf(“log(%f)= %f\n”, 2.5, value);

log(2.500000)= 0.916291

Copyright © 2019 NEXCOBOT Inc. 40 All Rights Reserved.

2.1.4.14. log10

Usage

log10() is used to calculate the logarithm value that is based on 10.

Example

Output

Command

F64_T log10 (X);

Command Notes

X • To calculate the argument of the logarithm that is based on

10, this argument value has to be greater than zero.

• Data type: F64_T

Return Value

Data type: F64_T

Return common logarithm value of X.

Related Information

log

exp

pow

1

2

3

4

5

F64_T value;

value = log10(2.5);
printf(“log10(%f)= %f\n”, 2.5, value);

log10(2.500000)= 0.397940

Copyright © 2019 NEXCOBOT Inc. 41 All Rights Reserved.

2.1.4.15. pow

Usage

pow() is used to calculate the power exponent.

Example

Output

Command

F64_T pow (X, Y);

Command Notes

X • Base value of power

• Data type: F64_T

Y • Exponential value of power

• Data type: F64_T

Return Value

Data type: F64_T

Return pow result of X and Y.

Related Information

log

exp

sqrt

1

2

3

4

5

F64_T value;

value = pow(2.5, 5.5);
printf(“pow(%f, %f)= %f\n”, 2.5, 5.5, value);

log10(2.500000, 5.500000)= 154.408089

Copyright © 2019 NEXCOBOT Inc. 42 All Rights Reserved.

2.1.4.16. sqrt

Usage

sqrt() is used to calculate square root.

Example

Output

Command

F64_T sqrt (X);

Command Notes

X • To calculate the argument of the square root that is based

on 10, this argument value has to be greater than zero.

• Data type: F64_T

Return Value

Data type: F64_T

Return square root of X.

Related Information

log

pow

1

2

3

4

5

F64_T value;

value = sqrt(2.5);
printf(“sqrt(%f)= %f\n”, 2.5, value);

sqrt(2.500000)= 1.581139

Copyright © 2019 NEXCOBOT Inc. 43 All Rights Reserved.

2.1.4.17. ceil

Usage

ceil() is used to calculate the smallest integer which is not less than the input

argument.

Example

Output

Command

F64_T ceil (X);

Command Notes

X • Calculate the nearest value that is greater than the argument.

• Data type: F64_T

Return Value

Data type: F64_T

The smallest integral value that is not less than X.

Related Information

floor

fabs

1

2

3

4

5

F64_T value;

value = ceil(-2.5);
printf(“ceil of %.1f = %.1f\n”, -2.5, value);

ceil of -2.5 = -2.0

Copyright © 2019 NEXCOBOT Inc. 44 All Rights Reserved.

2.1.4.18. floor

Usage

floor() is used to calculate the largest integer which is not greater than the input

argument.

Example

Output

Command

F64_T floor (X);

Command Notes

X • Calculate the nearest value that is less than the argument.

• Data type: F64_T

Return Value

Data type: F64_T

The largest integral value that is not greater than X.

Related Information

ceil

fabs

1

2

3

4

5

F64_T value;

value = floor(-2.5);
printf(“floor of %.1f = %.1f\n”, -2.5, value);

floor of -2.5 = -3.0

Copyright © 2019 NEXCOBOT Inc. 45 All Rights Reserved.

2.1.4.19. fmod

Usage

fmod() is used to calculate the residual value of numerator or denominator.

Example

Output

Command

F64_T fmod (X, Y);

Command Notes

X • Numerator

• Data type: F64_T

Y • Denominator

• Data type: F64_T

Return Value

Data type: F64_T

Return the fmod result of the X and Y residual value of numerator or

denominator.

Related Information

fabs

1

2

3

4

5

F64_T value;

value = fmod(10.5, 3.2);
printf(“fmod of %.1f / %.1f is %.1f\n”, 10.5, 3.2, value);

fmod of 10.5 / 3.2 is 0.9

Copyright © 2019 NEXCOBOT Inc. 46 All Rights Reserved.

2.1.4.20. abs

Usage

abs() is used to calculate the absolute value of the integer.

Example

Output

Command

F64_T abs (X);

Command Notes

X • To calculate the argument of the absolute value, this

argument must be an integer.

• Data type: I32_T

Return Value

Data type: I32_T

Return the absolute value of X.

Related Information

fabs

1

2

3

4

5

I32_T value;

value = abs(-10);
printf(“abs of %d is %d\n”, -10, value);

abs of -10 is 10

Copyright © 2019 NEXCOBOT Inc. 47 All Rights Reserved.

2.1.4.21. fabs

Usage

fabs() is used to calculate the absolute value of the float-point.

Example

Output

Command

F64_T fabs (X);

Command Notes

X • To calculate the argument of the absolute value, this

argument must be an integer.

• Data type: F64_T

Return Value

Data type: F64_T

Return the fabs result of X.

Related Information

abs

1

2

3

4

5

F64_T value;

value = fabs(-10.5);
printf(“fabs of %.1f is %.1f\n”, -10.5, value);

fmod of -10.5 is 10.5

Copyright © 2019 NEXCOBOT Inc. 48 All Rights Reserved.

2.1.4.22. deg2rad

Usage

deg2rad() is used to convert degree to radian.

Example

Output

Command

F64_T deg2rad (X);

Command Notes

X • Calculates the degree of deg2rad in degrees.

• Data type: F64_T

• 1 rad = 180/ PI degree

Return Value

Data type: F64_T

Return the deg2rad result of X.

Related Information

rad2deg

1

2

3

4

5

F64_T value;

value = deg2rad(30.0);
printf(“The degree of %f = %f radian\n”, 30.0, value);

The degree of 30.000000 = 0.523599 radian

Copyright © 2019 NEXCOBOT Inc. 49 All Rights Reserved.

2.1.4.23. rad2deg

Usage

rad2deg() is used to convert radian to degree.

Example

Output

Command

F64_T rad2deg (X);

Command Notes

X • Calculates the radian of deg2rad in radians.

• Data type: F64_T

• 1 rad = 180/ PI degree

Return Value

Data type: F64_T

Return the degree value of X.

Related Information

deg2rad

1

2

3

4

5

F64_T value;

value = rad2deg(1.0);
printf(“The radian of %f = %f degree\n”, 1.0, value);

The radian of 1.000000 = 57.295780 degree

Copyright © 2019 NEXCOBOT Inc. 50 All Rights Reserved.

2.1.4.24. sign

Usage

sign() is used to calculate the input argument as +1, -1 or 0.

Example

Output

Command

F64_T sign (X);

Command Notes

X • Calculates the augment of sign

• Data type: F64_T

Return Value

Data type: F64_T

Return the sign value of X.

Related Information

1

2

3

4

5

F64_T value;

value = sign(-3.5);
printf(“The sign of %f is %f\n”, -3.5, value);

The sign of -3.500000 is -1

Copyright © 2019 NEXCOBOT Inc. 51 All Rights Reserved.

 Others

2.1.5.1. printf: Message Output

Usage

printf() outputs the formatted data to the system message window of the

human machine interface. The total number of output characters cannot

exceed 127.

Example

2. Output: Hello World

3. Output: Value=32

4. Output: Double value=1.23

Command

printf (Format,…);

Command Notes

Format • Text message to be output to the message window.

• Data type: C-style string. Use double quotes,

e.g. ”Hello World”.

• The string can contain %d and %f.

o %d: output I32_T integer

o %f: output F64_T float point

Return Value

No return value.

Related Information

1

2

3

4

5

printf(“Hello World”);
printf(“Value=%d”, 32);
printf(“Double value=%f”, 1.23);

Copyright © 2019 NEXCOBOT Inc. 52 All Rights Reserved.

2.1.5.2. WAIT: Waiting For A Specific Time

Usage

WAIT() is used to wait for a specific time. The unit is millisecond.

Example

After waiting for 5 seconds, execute PTP(P0).

Command

WAIT (TimeMs)

Command Notes

Format • Timeout time setting.

• Data type: I32_T

• Unit: millisecond

• Setting value to 0: return immediately

• Setting value greater than 0: specify timeout time

Return Value

No return value.

Related Information

1

2

3

4

5

…
WAIT(5000);
PTP(P0);

Copyright © 2019 NEXCOBOT Inc. 53 All Rights Reserved.

2.2. GROUP and Commands

GROUP is an NRPL built-in object that is automatically generated based on

the number of robots currently supported by the system.

 GROUP Motion Commands

2.2.1.1. PTP: Perform a Fast Point-to-point Moving of Each Axis of the Group

Usage

PTP() is used to perform a fast point-to-point moving of each axis of the robot

group. The movement mode is planned with the shortest path of each axis

position in the group. Therefore, the trajectory of its tool center point (TCP)

may be an arbitrary path.

Example 1

After moving to P1 with PTP, then move to P2 in PTP mode.

Example 2

1. Move to P1 in PTP mode at 50% of the maximum speed.

1
2
3

PTP(P1);
PTP(P2);

1
2
3

PTP(P1, VP=50);

Copyright © 2019 NEXCOBOT Inc. 54 All Rights Reserved.

Example 3

1. Move to P1 in PTP mode, when distance of P1 is 10 mm, move to P2

in PTP mode.

2. When distance of P2 is 10 mm, move to P3 in PTP mode.

3. When P3 is in place, the task is done.

Example 4

After moving to P1 with PTP, then move to P2 in PTP mode.

P1 and P2 data type are RP_T. If PTP command specifies the Tool:[TL] or

Base:[BS], the point will refer to the position of Cartesian coordinate.

1
2
3
4
5

PTP(P1, Z=10);
PTP(P2, Z=10);
PTP(P3);

1
2
3

PTP(P1, BS=1);
PTP(P2, BS=1);

Copyright © 2019 NEXCOBOT Inc. 55 All Rights Reserved.

Command

PTP (TargetPos, [VP], [TL], [BS], [Z], [ABORT], [CONT]], [OW])

Command Notes

TargetPos • Absolute target position

• Data type: RP_T or RCP_T or RAP_T

• Set target position of point-to-point movement of the group, can use any

of the three data types below:

o RP_T: Robot position of composite coordinate which contains

Cartesian coordinate and axis coordinate.

o RCP_T: Robot position of Cartesian coordinate

o RAP_T: Robot position of axis coordinates

• If RP_T(composite position) is used, position will refer to axis

coordinates.

• If the [TL]:tool number or [BS]:base number is specified, the Cartesian

coordinate is used as a reference.

[VP] • Percentage of the maximum speed per axis. The parameter can be

ignored.

• Data type: F64_T

• Speed planning basis for point-to-point motion:

parameter of the maximum speed x VP(%)

• If this parameter is ignored, the motion planning will be scheduled at the

maximum speed.

• Refer to Group:AXVEL() on setting the system parameter of each axis.

[TL] • Specifies Tool number. The parameter can be ignored.

• Data type: I32_T

• If the Target position uses PCP_T: The robot Cartesian coordinate

position will set the tool number. If the target position uses axis

coordinate, this parameter will be ignored.

• If this parameter is ignored, the tool number is set by the system

parameter.

• Refer to Tool() and learn how to set the system parameter tool number.

[BS] • Specifies the Base number. The parameter can be ignored.

• Data type: I32_T

• If the Target position uses PCP_T: The robot Cartesian coordinate

position will set the base number. If the target position uses axis

coordinate, this parameter will be ignored.

• If this parameter is ignored, the base number is set by the system

Copyright © 2019 NEXCOBOT Inc. 56 All Rights Reserved.

Command Notes

parameter.

• Refer to Base() and learn how to set the system parameter of base

number.

[Z] • Specifies the smooth zone and length unit. The parameter can be

ignored.

• Data type: F64_T

• Specifies a smooth area with a target position as the center, the smooth

zone as the radius (as shown below). When a point-to-point (PTP)

motion enters the smooth zone, the smooth path is automatically planned

to connect with the next motion command, and the speed dose not

decrease to zero.

• If the smooth zone is set in a PTP mode, the NRPL program has to

execute the next motion command immediately. The behavior is the

same as using [CONT].

• If this parameter is ignored, the subsequent command will be executed

after the PTP motion is accurately in place.

 • This PTP command can be aborted by subsequent command. The

parameter can be ignored.

• Data type: flag constant.

• If ABORT is declared, it means that the PTP command can be

interrupted by subsequent motion command and execute the next motion

command immediately. If a zone is specified, the ABORT flag can be

ignored.

• If CONT flag is declared, the PTP command will not be changed by

subsequent motion command. The differences between ABORT and

CONT are compared in the following two examples.

o Example A

Copyright © 2019 NEXCOBOT Inc. 57 All Rights Reserved.

Command Notes

o Example B

CONT • Execute the next command continuously. The parameter can be ignored.

• Data type: flag constant.

• The PTP command is preset as blocked type, and it waits until the PTP

motion command to be accurately in place, then execute the subsequent

command.

• Under some application conditions, it is desirable to run the subsequent

command immediately after the PTP command is issued. Therefore, the

PTP command can be declared as a non-blocked type with the CONT

flag.

OW • Overwrites current motion command. The parameter can be ignored.

• Data type: flag constant.

1

2

3

4

5

PTP(P1, CONT); //Continue

WAIT(2000);

PTP(P2);

1

2

3

4

5

PTP(P1, ABORT); //Can be aborted

WAIT(2000);

PTP(P2);

Copyright © 2019 NEXCOBOT Inc. 58 All Rights Reserved.

Command Notes

• Will force-overwrite the current motion command

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 59 All Rights Reserved.

2.2.1.2. LIN: Execute Linear Motion of TCP In the Cartesian Coordinate

Usage

LIN() is used to execute the endpoint TCP linear motion of the GROUP (robot)

in the Cartesian space.

Example 1

1. Move to P1 in linear mode.

2. Move to P2 with LIN() when P1 is in place.

3. After P2 is in place, execute LIN() to move to P3.

Example 2

1. Move to P1 in linear mode.

2. Move to P2 with LIN() when P1 is in place. When distance between

current point and P2 is 10 mm (Zone=10), P3 is moved with LIN().

3. Wait until P3 is in place.

1
2
3
4
5

LIN(P1);
LIN(P2);
LIN(P3);

1
2
3
4
5

LIN(P1);
LIN(P2, Z=10);
LIN(P3);

Copyright © 2019 NEXCOBOT Inc. 60 All Rights Reserved.

Command

LIN (TargetPos, [V], [OV], [TL], [BS], [Z], [ABORT], [CONT]], [OW])

Command Notes

TargetPos • Absolute target position

• Data type: RP_T or RCP_T

• Sets the target position of linear motion of the group, can use any of the

two data types below:

o RP_T: Robot position of composite coordinate which contains

Cartesian coordinate and axis coordinate.

o RCP_T: Robot position of Cartesian coordinate

• If RP_T is used, the position of Cartesian coordinate is used as a

reference.

[VP] • Specifies the maximum linear velocity (mm/s) of endpoint (TCP) of

GROUP. The parameter can be ignored.

• Data type: F64_T

• If this parameter is ignored, the motion planning will be scheduled at the

maximum linear velocity of the system parameters.

• Refer to Group:VEL() on setting the system parameter.

[OV] • Specifies the maximum orientation velocity (Degree/s) of endpoint (TCP)

of GROUP. The parameter can be ignored.

• Data type: F64_T

• If this parameter is ignored, the motion planning will be scheduled at the

maximum orientation velocity of the system parameters.

• Refer to Group:OVEL() and learn how to set the system parameter.

[TL] • Specifies Tool number. The parameter can be ignored.

• Data type: I32_T

• If this parameter is ignored, the tool number is set by the system

Copyright © 2019 NEXCOBOT Inc. 61 All Rights Reserved.

Command Notes

parameter. Refer to Tool() and learn how to set the system parameter’s

tool number.

[BS] • Specifies the Base number. The parameter can be ignored.

• Data type: I32_T

• If this parameter is ignored, the base number is set by the system

parameter.

• Refer to Base() and learn how to set the system parameter of base

number.

[Z] • Specifies the smooth zone and length unit. The parameter can be

ignored.

• Data type: F64_T

• Specifies an area with the target position as the center and the smooth

zone as the radius (as shown below). When a linear motion enters the

smooth zone, the smooth path is automatically planned to connect with

the next motion command, and the velocity does not decrease to zero.

• If the smooth zone is set in a linear motion mode, the NRPL program has

to execute the next motion command immediately. The behavior is the

same as using [CONT].

• If this parameter is ignored, the subsequent command will be executed

after the linear motion is accurately in place.

[ABORT] • This PTP command can be aborted by subsequent command. The

parameter can be ignored.

• Data type: flag constant

• The connection of the motion commands is in the buffer mode; the

motion command will be pushed into the buffer and wait for the previous

command to complete. Therefore, if ABORT is declared, it means that

the LIN() command can be interrupted by subsequent motion command

and executes the next motion command immediately.

Copyright © 2019 NEXCOBOT Inc. 62 All Rights Reserved.

Command Notes

• If the zone is specified, the ABORT flag can be ignored.

CONT • Executes the next command continuously. The parameter can be

ignored.

• Data type: flag constant

• LIN() command is preset as a blocked type. It waits until the LIN() motion

command accurately in place, then execute the subsequent command.

Under some applied conditions, it is desirable to execute subsequent

command immediately after the LIN() command is issued. Therefore, the

LIN() command can be declared as a non-blocked type with the CONT

flag.

OW • Overwrites the current motion command. The parameter can be ignored.

• Data type: flag constant

• Will force-overwrite the current motion command

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 63 All Rights Reserved.

2.2.1.3. ARC: Execute Arc Motion of TCP Under the Cartesian Coordinate

Usage

ARC() is used to execute the endpoint (TCP) arc motion of GROUP (robot) in

the Cartesian space.

Example 1

1. Move to P1 in PTP mode

2. After the position is reached, the ARC() command is executed in the

arc motion mode to reach P3 through P2.

Example 2

1. Move to P1 in PTP mode.

2. After the position is reached, the ARC(P2, P3, ANG=360) is

executed in the arc motion mode and reaches P1 after moving 360

degrees through P2 and P3.

1
2
3
4
5

PTP(P1);
ARC(P2, P3);

1
2
3
4
5

PTP(P1);
ARC(P2, P3, ANG=360);

Copyright © 2019 NEXCOBOT Inc. 64 All Rights Reserved.

Command

ARC (RPOS_BP, RPOS_TP, [ANG], [V], [OV], [TL], [BS], [Z], [ABORT], [CONT], [OW])

Command Notes

RPOS_BP • Absolute target position: through the reference point of the arc

• Data type: RP_T or RCP_T

• Sets the absolute position of the target passing point of the Group's arc

motion, use either of the following two data types:

o RP_T: Robot position of the composite coordinate which contains

Cartesian coordinate and axis coordinate. If RP_T is used, the

position of the Cartesian coordinate is used as a reference.

o RCP_T: Robot position of the Cartesian coordinate

• When setting the command, make sure the passing point position of the

arc is not too close to the start or end of the arc. The best setting is to use

the middle position between the start and end points. If the passing point

position is too close to the start or endpoint, the controller may not be

able to determine the arc path and return the error.

• Note: RPOS_BP and RPOS_TP must use the same data type and

cannot be used together.

RPOS_TP • Absolute target position: end point of the arc

• Data type: RP_T or RCP_T

• Sets the absolute position of the target passing point of the Group's arc

motion, use either of the following two data types:

o RP_T: Robot position of the composite coordinate which contains

Cartesian coordinate and axis coordinate. If RP_T is used, the

position of the Cartesian coordinate is used as a reference.

o RCP_T: Robot position of Cartesian coordinate

Copyright © 2019 NEXCOBOT Inc. 65 All Rights Reserved.

Command Notes

• If arc degree [ANG] parameter is specified, the RPOS_TP parameter

becomes the second reference passing point of the arc.

• Note: RPOS_BP and RPOS_TP must use the same data type and

cannot be used together.

[ANG] • Specifies the arc degree in the arc motion. The parameter can be

ignored.

• Data type: F64_T

• If you want to perform an arc motion of 360 degrees or more, you can

directly specify the arc degree by setting this parameter. After setting this

parameter, RPOS_TP parameter becomes the second reference passing

point.

[V] • Specifies the maximum linear velocity (mm/s) of the GROUP’s endpoint

(TCP). The parameter can be ignored.

• Data type: I32_T

• If this parameter is ignored, the motion planning will be scheduled at the

maximum linear velocity of system parameters. Refer to Group:VEL()

and learn how to set the system parameter.

[OV] • Specifies the maximum orientation velocity (Degree/s) of the GROUP’s

endpoint (TCP). The parameter can be ignored.

• Data type: F64_T

• If this parameter is ignored, the motion planning will be scheduled at the

maximum orientation velocity of the system parameters. Refer to

Group:VEL() and learn how to set the system parameter.

[TL] • Specifies the Tool number. The parameter can be ignored.

• Data type: I32_T

• If this parameter is ignored, the tool number is set by the system

parameter. Refer to Tool() and learn how to set the system parameter.

[BS] • Specifies the Base number. The parameter can be ignored.

• Data type: I32_T

• If this parameter is ignored, the base number is set by the system

parameter. Refer to Base() and learn how to set the system parameter.

[Z] • Specifies the smooth zone and length unit. The parameter can be

ignored.

• Data type: F64_T

• Specifies an area with the target position as the center and the smooth

zone as the radius (as shown below). When a linear motion enters the

smooth zone, the smooth path is automatically planned to connect with

Copyright © 2019 NEXCOBOT Inc. 66 All Rights Reserved.

Command Notes

the next motion command, and the velocity does not decrease to zero.

• If the smooth zone is set in a linear motion mode, the NRPL program has

to execute the next motion command immediately. The behavior is the

same as using [CONT].

• If this parameter is ignored, the subsequent command will be executed

after the linear motion is accurately in place.

[ABORT] • This PTP command can be aborted by subsequent command. The

parameter can be ignored.

• Data type: flag constant

• The connection of the motion commands is in the buffer mode; the

motion command will be pushed into the buffer and wait for the previous

command to complete. Therefore, if ABORT is declared, it means that

the ARC() command can be interrupted by subsequent motion command

and executes the next motion command immediately.

• If the zone is specified, the ABORT flag can be ignored.

CONT • Executes the next command continuously. The parameter can be

ignored.

• Data type: flag constant

• All of the motion commands are preset as the blocked type, they wait

until the motion command to be accurately in place, and then execute the

subsequent command. Under some applied conditions, it is desirable to

execute subsequent command immediately after the ARC() command is

issued. Therefore, the ARC() command can be declared as a

non-blocked type with the CONT flag.

OW • Overwrites the current motion command. The parameter can be ignored.

• Data type: flag constant

• Will force-overwrite the current motion command

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 67 All Rights Reserved.

 Group Parameters Setting Commands

2.2.2.1. AXVEL: Velocity

Usage

AXVEL () is used to set the maximum axis velocity of GROUP parameters.

Once the setup is complete, it will be recorded in the GROUP internal

parameters until the program ends or the AXVEL() command is called again.

PTP() plans the motion based on the maximum velocity of each axis.

Example 1

1. Set the maximum velocity of GROUP axis 1 to 10 unit/sec.

Example 2

1. Set the maximum velocity of the GROUP axes:

• Axis 1 to 20 unit/sec.

• Axis 3 to 25 unit/sec.

• Axis 5 to 30 unit/sec.

Command

AXVEL ([A0], [A1], [A2], [A3], [A4], [A5], [A6], [A7]);

Command Notes

[A0]~[A7] • The parameter of each GROUP axis (0-7). This parameter can be

ignored.

• Data type: F64_T

• Set the maximum axis velocity of GROUP. The unit is unit/sec.

• The unit type alters with the motion type of the GROUP axis, the

revolute joint’s unit is degree; the prismatic joint’s unit is mm.

• Note: There should be at least one axis is set up between [A0]-[A7].

Return Value

No return value.

Related Information

1
2
3

AXVEL(A0=10);

1
2
3

AXVEL(A0=20, A2=25, A4=30);

Copyright © 2019 NEXCOBOT Inc. 68 All Rights Reserved.

2.2.2.2. AXACC: Acceleration

Usage

AXACC() is used to set the maximum axis acceleration of the GROUP

parameters. Once the setup is complete, it will be recorded in the GROUP

internal parameters until the program ends or the AXACC() command is called

again. PTP() plans the motion based on the maximum acceleration of each

axis.

Example 1

1. Set the maximum acceleration of GROUP axis 1 to 50 unit/sec2.

Example 2

1. Set the maximum acceleration of GROUP axes:

• Axis 1 to 20 unit/sec2

• Axis 3 to 25 unit/sec2

• Axis 5 to 30 unit/sec2

Command

AXACC ([A0], [A1], [A2], [A3], [A4], [A5], [A6], [A7]);

Command Notes

[A0]~[A7] • The parameter of each GROUP axis (0-7). This parameter can

be ignored.

• Data type: F64_T

• Set the maximum axis velocity of GROUP. The unit is

unit/sec2.

• The unit type alters with the motion type of the GROUP axis,

the revolute joint’s unit is degree; the prismatic joint’s unit is

mm.

• Note: There should be at least one axis is set up between

[A0]-[A7].

1
2
3

AXACC(A0=50);

1
2
3

AXACC(A0=20, A2=25, A4=30);

Copyright © 2019 NEXCOBOT Inc. 69 All Rights Reserved.

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 70 All Rights Reserved.

2.2.2.3. AXDEC: Deceleration

Usage

AXDEC() is used to set the maximum axis deceleration of the GROUP

parameters. Once the setup is complete, it will be recorded in the GROUP

internal parameters until the program ends or the AXDEC() command is called

again. PTP() plans the motion based on the maximum deceleration of each

axis.

Example 1

1. Set the maximum deceleration of GROUP axis 1 to 50 unit/sec2.

Example 2

1. Set the maximum deceleration of GROUP axes:

• Axis 1 to 20 unit/sec2

• Axis 3 to 25 unit/sec2

• Axis 5 to 30 unit/sec2

Command

AXDEC ([A0], [A1], [A2], [A3], [A4], [A5], [A6], [A7]);

Command Notes

[A0]~[A7] • The parameter of each GROUP axis (0-7). This parameter can be

ignored.

• Data type: F64_T

• Set the maximum axis velocity of GROUP. The unit is unit/sec2.

• The unit type alters with the motion type of the GROUP axis, the

revolute joint’s unit is degree; the prismatic joint’s unit is mm.

• Note: There should be at least one axis is set up between [A0]-[A7].

Return Value

No return value.

Related Information

1
2
3

AXDEC(A0=50);

1
2
3

AXDEC(A0=20, A2=25, A4=30);

Copyright © 2019 NEXCOBOT Inc. 71 All Rights Reserved.

2.2.2.4. AXJERK: Jerk

Usage

AXJERK() is used to set the maximum axis jerk of the GROUP parameters.

Once the setup is complete, it will be recorded in the GROUP internal

parameters until the program ends or the AXJERK() command is called again.

PTP() plans the motion based on the maximum jerk of each axis.

Example 1

1. Set the maximum jerk of GROUP axis 1 to 50 unit/sec3.

Example 2

1. Set the maximum jerk of GROUP axes:

• Axis 1 to 20 unit/sec3

• Axis 3 to 25 unit/sec3

• Axis 5 to 30 unit/sec3

Command

AXDEC ([A0], [A1], [A2], [A3], [A4], [A5], [A6], [A7]);

Command Notes

[A0]~[A7] • The parameter of each GROUP axis (0-7). This parameter can be

ignored.

• Data type: F64_T

• Sets the maximum GROUP axis velocity . The unit is unit/sec3.

• The unit type alters with the motion type of the GROUP axis, the

revolute joint’s unit is degree; the prismatic joint’s unit is mm.

• Note: There should be at least one axis is set up between [A0]-[A7].

Return Value

No return value.

Related Information

1
2
3

AXJERK(A0=50);

1
2
3

AXJERK(A0=20, A2=25, A4=30);

Copyright © 2019 NEXCOBOT Inc. 72 All Rights Reserved.

2.2.2.5. VEL: Linear Velocity

Usage

VEL() is used to set the linear velocity of the GROUP parameters. Once the

setup is complete, it will be recorded in the GROUP internal parameters until

the program ends or the VEL() command is called again. LIN() or ARC() plans

the linear motion based on the linear velocity.

Example

1. Set the linear velocity of GROUP axis 1 to 100 mm/sec.

Command

VEL (Vel);

Command Notes

Vel • GROUP linear velocity

• Data type: F64_T

• Set the GROUP linear velocity. The Unit is mm/sec.

Return Value

No return value.

Related Information

1
2
3

VEL(100);

Copyright © 2019 NEXCOBOT Inc. 73 All Rights Reserved.

2.2.2.6. ACC: Linear Acceleration

Usage

ACC() is used to set the linear acceleration of the GROUP parameters. Once

the setup is complete, it will be recorded in the GROUP internal parameters

until the program ends or the ACC() command is called again. LIN() or ARC()

plans the linear motion based on the linear acceleration.

Example

1. Set the linear acceleration of GROUP axis 1 to 100 mm/sec2.

Command

ACC (Acc);

Command Notes

Acc • GROUP linear acceleration

• Data type: F64_T

• Set the GROUP linear acceleration. The Unit is mm/sec2.

Return Value

No return value.

Related Information

1
2
3

ACC(100);

Copyright © 2019 NEXCOBOT Inc. 74 All Rights Reserved.

2.2.2.7. DEC: Linear Deceleration

Usage

DEC() is used to set the linear deceleration of the GROUP parameters. Once

the setup is complete, it will be recorded in the GROUP internal parameters

until the program ends or the DEC() command is called again. LIN() or ARC()

plans the linear motion based on the linear deceleration.

Example

1. Set the linear deceleration of GROUP axis 1 to 100 mm/sec2.

Command

DEC (Dec);

Command Notes

Dec • GROUP linear deceleration

• Data type: F64_T

• Set the GROUP linear deceleration. The Unit is mm/sec2.

Return Value

No return value.

Related Information

1
2
3

DEC(100);

Copyright © 2019 NEXCOBOT Inc. 75 All Rights Reserved.

2.2.2.8. JERK: Linear Jerk

Usage

JERK() is used to set the linear jerk of the GROUP parameters. Once the

setup is complete, it will be recorded in the GROUP internal parameters until

the program ends or the JERK() command is called again. LIN() or ARC()

plans the linear motion based on the linear jerk.

Example

1. Set the linear jerk of GROUP axis 1 to 100 mm/sec3.

Command

JERK (Jerk);

Command Notes

Jerk • GROUP linear jerk

• Data type: F64_T

• Set the GROUP linear jerk. The Unit is mm/sec3.

Return Value

No return value.

Related Information

1
2
3

JERK(100);

Copyright © 2019 NEXCOBOT Inc. 76 All Rights Reserved.

2.2.2.9. OVEL: Orientation Velocity

Usage

OVEL() is used to set the orientation velocity of GROUP parameters. Once the

setup is complete, it will be recorded in the GROUP internal parameters until

the program ends or the OVEL() command is called again. LIN() or ARC() plan

the linear motion based on the orientation velocity.

Example

1. Set the orientation velocity of GROUP is 50 deg/sec.

Command

OVEL (OVel);

Command Notes

OVel • GROUP orientation velocity

• Data type: F64_T

• Set the GROUP orientation velocity. The Unit is mm/sec3.

Return Value

No return value.

Related Information

1
2
3

OVEL(50);

Copyright © 2019 NEXCOBOT Inc. 77 All Rights Reserved.

2.2.2.10. OACC: Orientation Acceleration

Usage

OACC() is used to set the orientation acceleration of the GROUP parameters.

Once the setup is complete, it will be recorded in the GROUP internal

parameters until the program ends or the OACC() command is called again.

LIN() or ARC() plans the linear motion based on the orientation acceleration.

Example

1. Set the orientation acceleration of GROUP is 50 deg/sec2.

Command

OACC (OAcc);

Command Notes

OAcc • GROUP orientation acceleration

• Data type: F64_T

• Set the GROUP orientation acceleration. The Unit is mm/sec2.

Return Value

No return value.

Related Information

1
2
3

OACC(50);

Copyright © 2019 NEXCOBOT Inc. 78 All Rights Reserved.

2.2.2.11. ODEC: Orientation Deceleration

Usage

ODEC() is used to set the orientation deceleration of the GROUP parameters.

Once the setup is complete, it will be recorded in the GROUP internal

parameters until the program ends or the ODEC() command is called again.

LIN() or ARC() plans the linear motion based on the orientation deceleration.

Example

1. Set the GROUP orientation deceleration to 50 deg/sec2.

Command

ODEC (ODec);

Command Notes

ODec • GROUP orientation deceleration

• Data type: F64_T

• Set the GROUP orientation deceleration. The Unit is mm/sec2.

Return Value

No return value.

Related Information

1
2
3

ODEC(50);

Copyright © 2019 NEXCOBOT Inc. 79 All Rights Reserved.

2.2.2.12. OJERK: Orientation Jerk

Usage

OJERK() is used to set the orientation jerk of the GROUP parameters. Once

the setup is complete, it will be recorded in the GROUP internal parameters

until the program ends or the OJERK() command is called again. LIN() or

ARC() plan the linear motion based on the orientation jerk.

Example

Set the orientation jerk of GROUP is 50 deg/sec3.

Command

OJERK (OJerk);

Command Notes

OJerk • GROUP orientation jerk

• Data type: F64_T

• Set the GROUP orientation jerk. The Unit is mm/sec3.

Return Value

No return value.

Related Information

1
2
3

OJERK(50);

Copyright © 2019 NEXCOBOT Inc. 80 All Rights Reserved.

2.2.2.13. TOOL: Tool Number

Usage

TOOL() is used to set the tool number of the GROUP parameters. Once the

setup is complete, it will be recorded in the GROUP internal parameters until

the program ends or the TOOL() command is called again.

If a tool number is not set, the target position of the motion command will

represent the position and orientation of the flange’s endpoint. When the tool

parameter is used, the tool center point (TCP) coordinate system is attached to

the endpoint of the tool based on the conversion relationship.

Each GROUP supports up to 16 sets of tools. Each set of tool parameters can

be set up through the teach pendant user interface (TPUI) or by calling the

TDAT() command settings.

When planning or teaching the position points, you must pay attention to the

Tool and Base’s current numbers. When using the NRPL, you must confirm all

the points and Tool numbers match with the Base number. If they do not match,

the path of the robot may not as you expected.

Example 1

1. Set the GROUP system parameter: Tool number is 0.

2. Execute LIN() command to move to P1 in linear motion in the

Cartesian space. The P1 position is based on the coordinate system

1
2
3

TOOL(0);
LIN(P1);

Copyright © 2019 NEXCOBOT Inc. 81 All Rights Reserved.

of tool number 0.

Example 2

1. Set the GROUP system parameter. The tool number is 0.

2. Execute LIN() to move to P1 in linear motion in the Cartesian space.

The P1 position is planned based on the coordinate system of tool

number 0.

3. Execute LIN() to move to P2 in linear motion in the Cartesian space.

The P2 position is planned based on the coordinate system of tool

number 1.

4. Execute LIN() to move to P3 in linear motion in the Cartesian space.

The P3 position is planned based on the coordinate system of tool

number 0.

Command

TOOL (Tool);

Command Notes

Tool • GROUP Tool number

• Data type: F64_T

• Set the GROUP tool numbers (from -1 to 15)

• -1: Do not specify the tool, the position is the flange endpoint of the

robot.

• 0-15: From the 1st set of tool (No. 0) to the 16th set of tool (No. 15).

Return Value

No return value.

Related Information

1
2
3
4
5
6

TOOL(0);
LIN(P1);
LIN(P2, TL=1);
LIN(P3)

Copyright © 2019 NEXCOBOT Inc. 82 All Rights Reserved.

2.2.2.14. TDAT: Tool Setting

Usage

TDAT() is used to set the GROUP tool parameter. Once the setup is complete,

it will be recorded in the GROUP internal parameters until the program ends or

the TDAT() command is called again.

Each GROUP supports up to 16 sets of tools. Each set of tool parameters can

be set up through the teach pendant user interface (TPUI) or by calling the

TDAT() command settings.

Content of Settings

Data

Type

Variable

Name

Data

Type
Description

TDAT_T

TYPE I32_T Always 0

TRAN.X F64_T Offset along flange x-axis

TRAN.Y F64_T Offset along flange y-axis

TRAN.Z F64_T Offset along flange z-axis

TRAN.A F64_T Rotation angle about flange z-axis

TRAN.B F64_T Rotation angle about flange y-axis

TRAN.C F64_T Rotation angle about flange x-axis

If a tool number is not set, the target position of the motion command will

represent the position and orientation of the flange’s endpoint. When the tool

parameter is used, the tool center point (TCP) coordinate system is attached to

the endpoint of the tool based on the conversion relationship.

Example: Set a tool parameters as shown below:

Copyright © 2019 NEXCOBOT Inc. 83 All Rights Reserved.

Setting Value

Data

Type

Variable

Name
Value Description

TDAT_T

TYPE 0 Always 0

TRAN.X -50 Offset along flange x-axis

TRAN Y 0 Offset along flange y-axis

TRAN.Z 100 Offset along flange z-axis

TRAN.A 0 Rotation angle about flange z-axis

TRAN.B -45 Rotation angle about flange y-axis

TRAN.C 0 Rotation angle about flange x-axis

1. Declare a TDAT_T variable.

3-9. Set up Tool parameters.

11. Set tool number 0 tool parameters to GROUP system.

13. Execute the LIN() command to move to P1 in linear motion in

the Cartesian space. The P1 position is planned based on the

coordinate system of Tool number 0.

1
2
3
4
5
6
7
8
9
10
11
12
13

TDAT_T toolData;

toolData.TYPE = 0;
toolData.TRAN.X = -50.0;
toolData.TRAN.Y = 0.0;
toolData.TRAN.Z = 100.0;
toolData.TRAN.A = 0.0;
toolData.TRAN.B = -45.0;
toolData.TRAN.C = 0.0;

TDAT(0, toolData);

LIN(P1, TL=0);

Copyright © 2019 NEXCOBOT Inc. 84 All Rights Reserved.

Command

TDAT (Tool, TDat);

Command Notes

Tool • GROUP Tool number

• Data type: F64_T

• Set the GROUP tool numbers (from 0 to 15)

• 0-15: From the 1st set of tool (No. 0) to the 16th set of tool (No.

15).

TDat • GROUP Tool number

• Data type: F64_T

• Set the tool parameters of the numbered GROUP tool

Data

Type

Variable

Name

Data

Type
Description

TDAT_T

TYPE I32_T Always 0

TRAN.X F64_T Offset along flange x-axis

TRAN.Y F64_T Offset along flange y-axis

TRAN.Z F64_T Offset along flange z-axis

TRAN.A F64_T
Rotation angle about flange

z-axis

TRAN.B F64_T
Rotation angle about flange

y-axis

TRAN.C F64_T
Rotation angle about flange

x-axis

Return Value

No return value.

Related Information

Copyright © 2019 NEXCOBOT Inc. 85 All Rights Reserved.

2.2.2.15. BASE: Base Number

Usage

BASE() is used to set the base number of the GROUP parameters. Once the

setup is complete, it will be recorded in the GROUP internal parameters until

the program ends or the BASE() command is called again.

Specifications of base coordinate of GROUP:

• Support up to 32 sets of base coordinates

• Up to 3 levels of hierarchies

The advantage of setting the base coordinate is that the coordinates of the

base referenced when teaching the path points are relative and variable. For

example, we can set the work table as a set of reference base. When the work

table moves(the actual point position changes), only a new reference base

coordinates needs to be set. All of point positions do not need to reteach and

can be used immediately.

The base coordinate setting is hierarchical, as shown above. Base0 is relative

to the Machine Coordinate System (MCS), also known as the robot coordinate

system, and then Base1 and Base2 are relative to Base0. When Base0

changes, Base1 and Base2 also change.

Copyright © 2019 NEXCOBOT Inc. 86 All Rights Reserved.

The setting method is to set the parameters of 0xC0-0xDF (total 32 sets).

Setting Definitions

Param.

Num.

Sub.

Index

Data

Type
Description

0xC0-DF

0 F64_T Offset along reference base x-axis

1 F64_T Offset along reference base y-axis

2 F64_T Offset along reference base z-axis

3 F64_T Rotation angle about reference base z-axis

4 F64_T Rotation angle about reference base y-axis

5 F64_T Rotation angle about reference PCS x-axis

6 I32_T Reference base index

Each GROUP supports up to 32 sets of bases. Each set of the base can be

setup by the teach pendant user interface (TPUI) or by calling the BDAT()

command.

When planning or teaching the position points, user must pay attention to the

Tool and Base number currently used. When using the NRPL, you must

confirm all the positions and Tool numbers match with the Base numbers. If

they do not match, the path of the robot may not as you expected.

Example 1

1. Set the GROUP system parameter: Base number is 0.

2. Execute the LIN() command to move to P1 in linear motion in the

1
2
3

BASE(0);
LIN(P1);

Copyright © 2019 NEXCOBOT Inc. 87 All Rights Reserved.

Cartesian space. The P1 position is based on the coordinate system

of base No. 0.

Example 2

1. Set the GROUP system parameter: Base number is 0.

2. Execute the LIN() command to move to P1 in linear motion in the

Cartesian space. The P1 position is based on the coordinate system of

base No. 0.

3. Execute the LIN() command to move to P2 in linear motion in the

Cartesian space. The P2 position is based on the coordinate system of

base No. 1.

4. Execute the LIN() command to move to P3 in linear motion in the

Cartesian space. The P3 position is based on the coordinate system of

base No. 0.

Command

BASE (Base);

Command Notes

Base • GROUP Base number

• Data type: F64_T

• Set the GROUP base numbers (from -1 to 31)

• -1: Do not specify the base, use the MCS (robot coordinate

system) as the reference of the base coordinate.

• 0-31: From the 1st set of tool (No. 0) to the 32nd set of tool (No. 31).

Return Value

No return value.

Related Information

1
2
3
4
5
6

BASE(0);
LIN(P1);
LIN(P2, TL=1);
LIN(P3)

Copyright © 2019 NEXCOBOT Inc. 88 All Rights Reserved.

2.2.2.16. BDAT: Base Setting

Usage

BDAT() is used to set the GROUP base parameters. Once the setup is

complete, it will be recorded in the GROUP internal parameters until the

program ends or the BDAT() command is called again.

Each GROUP supports up to 32 sets of bases. Each set of the base can be

setup by the TPUI or by calling the BDAT() command.

Content of Settings

Data

Type

Variable

Name

Data

Type
Description

BDAT_T

TYPE I32_T Always 0

TRAN.X F64_T Offset along flange x-axis

TRAN.Y F64_T Offset along flange y-axis

TRAN.Z F64_T Offset along flange z-axis

TRAN.A F64_T Rotation angle about flange z-axis

TRAN.B F64_T Rotation angle about flange y-axis

TRAN.C F64_T Rotation angle about flange x-axis

REF_BASE I32_T Reference base index

When planning or teaching the position points, you must pay attention to the

current Tool and Base numbers. When using the NRPL, you must confirm all

the positions and Tool numbers match with the Base numbers. If they do not

match, the path of the robot may not as you expected.

Example: Setting the BASE parameters

Joe wants to set the Base coordinate origin (Index = 0) that is relative to the

MCS’s X, Y, Z axes to the following value:

• X axis: 10 mm

• Y axis:15 mm

• Z axis: 5 mm

Also, the Base0 coordinate system is rotated 90 degrees with respect to the Z

axis of the MCS.

Copyright © 2019 NEXCOBOT Inc. 89 All Rights Reserved.

Setting Value

Data

Type

Variable

Name
Value Description

BDAT_T

TYPE 0 Always 0

TRAN.X 10 10 mm relative to the GROUP MCS X axis

TRAN.Y 15 15 mm relative to the GROUP MCS Y axis

TRAN.Z 5 5 mm relative to the MCS GROUP Z axis

TRAN.A 90 90 deg. relative to the MCS GROUP Z axis

TRAN.B 0 0 deg. relative to the MCS GROUP Y axis

TRAN.C 0 0 deg. relative to the MCS GROUP X axis

REF_BASE -1 Relative to MCS

1. Declare a BDAT_T variable.

3~9. Setup the Base parameters.

11. Set the base parameters to the GROUP system parameters:

Base parameters of the base No. 0.

13. Execute the LIN() command to move to P1 in linear motion in the

Cartesian space. The P1 position is based on the coordinate

system of base No. 0.

1
2
3
4
5
6
7
8
9
10
11
12
13

BDAT_T baseData;

baseData.TYPE = 0;
baseData.TRAN.X = 10.0;
baseData.TRAN.Y = 15.0;
baseData.TRAN.Z = 5.0;
baseData.TRAN.A = 90.0;
baseData.TRAN.B = 0.0;
baseData.TRAN.C = 0.0;
baseData.REF_BASE = -1;
BDAT(0, baseData);

LIN(P1, BS=0);

Copyright © 2019 NEXCOBOT Inc. 90 All Rights Reserved.

Command

BDAT (Base, BDat);

Command Notes

Tool • GROUP Base number

• Data type: F64_T

• Set the GROUP base numbers (from 0 to 31)

• 0-31: From the 1st set of base (No. 0) to the 32nd set of base (No.

31).

BDat • GROUP Base number

• Data type: BDAT_T

• Set the base parameters of the numbered GROUP base:

Data

Type

Variable

Name

Data

Type
Description

TDAT_T

TYPE I32_T Always 0

TRAN.X F64_T Offset along flange x-axis

TRAN.Y F64_T Offset along flange y-axis

TRAN.Z F64_T Offset along flange z-axis

TRAN.A F64_T
Rotation angle about flange

z-axis

TRAN.B F64_T
Rotation angle about flange

y-axis

TRAN.C F64_T
Rotation angle about flange

x-axis

REF_BASE I32_T Reference base index

Return Value

No return value.

Related Information

	Copyright Statement and Disclaimer
	Revision History
	Contents
	1. Data Type
	1.1. Basic Data Type
	1.2. Inner Structure Data Type
	1.2.1. Structure: AP_T
	1.2.2. Structure: CP_T
	1.2.3. Structure: CFG_T
	1.2.4. Structure: EP_T
	1.2.5. Structure: RAP_T
	1.2.6. Structure: RCP_T
	1.2.7. Structure: RP_T

	2. Built-in Functions
	2.1. System Functions
	2.1.1. Digital I/O control
	2.1.1.1. DOUT: Digital Output Setting
	Related Information

	2.1.1.2. GDOUT: Get Digital Output
	Usage
	Command
	Return Value
	Related Information

	2.1.1.3. GDIN: Get Digital Input
	2.1.1.4. WDIN: Wait For The Digit Input

	2.1.2. Analog I/O control
	2.1.2.1. AOUT: Analog Output Setting
	2.1.2.2. GAIN: Get Analog Input Signal
	2.1.2.3. GAOUT: Get Analog Output Signal
	2.1.2.4. WAIN: Waiting for the Analog Input Value Meets the Set Range

	2.1.3. Task Synchronize
	2.1.3.1. WaitEvent: Waiting Event
	2.1.3.2. SetEvent: Set Event to Signaled State
	2.1.3.3. ResetEvent: Reset Event to Un-signaled State

	2.1.4. Math
	2.1.4.1. cos
	2.1.4.2. sin
	2.1.4.3. tan
	2.1.4.4. acos
	2.1.4.5. asin
	2.1.4.6. atan
	2.1.4.7. atan2
	2.1.4.8. cosh
	2.1.4.9. sinh
	2.1.4.10. tanh
	2.1.4.11. exp
	2.1.4.12. ldexp
	2.1.4.13. log
	2.1.4.14. log10
	2.1.4.15. pow
	2.1.4.16. sqrt
	2.1.4.17. ceil
	2.1.4.18. floor
	2.1.4.19. fmod
	2.1.4.20. abs
	2.1.4.21. fabs
	2.1.4.22. deg2rad
	2.1.4.23. rad2deg
	2.1.4.24. sign

	2.1.5. Others
	2.1.5.1. printf: Message Output
	2.1.5.2. WAIT: Waiting For A Specific Time

	2.2. GROUP and Commands
	2.2.1. GROUP Motion Commands
	2.2.1.1. PTP: Perform a Fast Point-to-point Moving of Each Axis of the Group
	2.2.1.2. LIN: Execute Linear Motion of TCP In the Cartesian Coordinate
	2.2.1.3. ARC: Execute Arc Motion of TCP Under the Cartesian Coordinate

	2.2.2. Group Parameters Setting Commands
	2.2.2. Group Parameters Setting Commands
	2.2.2.1. AXVEL: Velocity
	2.2.2.2. AXACC: Acceleration
	2.2.2.3. AXDEC: Deceleration
	2.2.2.4. AXJERK: Jerk
	2.2.2.4. AXJERK: Jerk
	2.2.2.5. VEL: Linear Velocity
	2.2.2.6. ACC: Linear Acceleration
	2.2.2.7. DEC: Linear Deceleration
	2.2.2.8. JERK: Linear Jerk
	2.2.2.9. OVEL: Orientation Velocity
	2.2.2.10. OACC: Orientation Acceleration
	2.2.2.11. ODEC: Orientation Deceleration
	2.2.2.12. OJERK: Orientation Jerk
	2.2.2.13. TOOL: Tool Number
	2.2.2.14. TDAT: Tool Setting
	2.2.2.15. BASE: Base Number
	2.2.2.16. BDAT: Base Setting

